

Infrared laser based sensor technology for ¹³CO₂/¹²CO₂ isotopic ratio measurements: opportunities and challenges

F. K. Tittel, D. Weidmann, C. B. Roller, R. F. Curl Rice University, 6100 Main Street, Houston, TX, 77005, USA http://www.ece.rice.edu/lasersci

SIRIS 2004

Vienna

Sept 6-8, 2004

- Motivation for measuring ¹³CO₂/¹²CO₂ Isotopic Ratios
- Selection of optimum CO₂ Absorption Line Pairs
- Quantum Cascade Laser based Sensor Design in the 2300 cm⁻¹ Spectral Region
- Current Status of QCL based CO₂ Isotopic Ratio
 Spectrometer
- Future Outlook and Conclusions

Motivation for Measuring ¹³CO₂/¹²CO₂ Isotopic Ratios

- Volcano eruption forecasting and gas emission studies (CO₂,HCl,SO₂,HF,H₂S,CO,H₂O)
- Atmospheric Chemistry: Environmental monitoring of C_y gases (CO₂,CO,CH₄)
 - Global warming studies
 - > Temporal and spatial variations of the isotopic ratios
 - > Identification of carbon sources and sinks
 - Global carbon budget studies
- Study of planetary gases (CO,CO2,H₂O,NH₃)
- Medical applications (Non-invasive breath analysis)
- Combustion diagnostics
- Biology (Photosynthesis)

Volcanological application

- CO₂ the most abundant component of volcanic gases after H₂O
- δ¹³C is a sensitive tracer of magmatic vs. hydrothermal or groundwater contributions to volcanic gases
- Monitoring δ^{13} C can be used in eruption forecasting

Isotopic Ratio Measurement Techniques

- Current standard technique: Isotope Ratio Mass Spectrometry (IRMS) $\Delta\delta \sim 0.01$ -0.05 $^{0}/_{00}$
 - Small mass differences are difficult to measure
 - Not real time
 - Not field deployable
 - Complex sample preparation and sample destruction
- Fourier Transform Spectroscopy $\Delta\delta \sim 0.1$ -0.2 $^{0}/_{00}$
 - Not selective for compact and intermediate sized platform
- Tunable Laser Absorption Spectroscopy $\Delta\delta \sim 0.2^{-0}/_{00}$
 - Lead salt lasers
 - Difference Frequency Generation
 - Near-infrared diode
 - mid-infrared quantum cascade lasers

Requirements for a Field Deployable CO₂ Isotopic Ratio Sensor

- General design features for an isotopic ratio sensor include:
 - High precision
 - > Temperature stability of cell
 - > Pressure stability
 - > Humidity effects due to CO₂-H₂O collision broadening
 - > Real-time measurements and self calibrating
 - Rugged, compact construction for field use
 - > Portable and easy to use by a single operator
 - > Low power consumption
 - > Low cost
 - Low maintenance
 - > Room temperature (TEC) operation with DFB QC lasers
 - > Room temperature (TEC) detectors.
- Need to reduce pressure broadening by means of extractive sampling
- Calibration capability (zero and reference standards)
- Availability of lasers may limit choice of operating lines and impact cell design

Target Specifications for CO₂ Isotopic Ratio Sensor

- The CO_2 isotope spectrometer will have a precision in $\delta^{13}CO_2$ of 1‰ or better
- Adding a third channel would improve precision to $0.1^{0}/_{00}$ by canceling pulse-to-pulse fluctuations

Parameter	CO ₂ Isotope Sensor				
	12CO ₂	13CO ₂			
Range	0 to 1000 ppmv	0 to 10 ppmv			
Precision	≤ 0.3 ppmv	≤ 0.004 ppmv			
Size	40x40x50 cm ³				

CO₂ Absorption Line Selection Criteria

- Two strategies:
 - Similar strong absorption of ¹²CO₂ and ¹³CO₂ lines
 - > Very sensitive to temperature variations
 - Similar transition lower energies
 - ➤ Requires a dual path length approach to compensate for the large difference in concentration between major and minor isotopic species
- Both absorption lines must lie in a laser frequency scan window
- Avoid presence of other interfering atmospheric trace gas species

Ro-vibrational bands suitable for ¹²CO₂/¹³CO₂ ratio measurements

HITRAN Simulation of Selected 2311 cm⁻¹ CO₂ Lines (Dual path length approach)

Calculations for CO₂ present in volcanic fumarolic gases

13CO₂

1% CO₂
2.4 m path length
50 torr total pressure

310.9 2311.0 2311.1 2311.2 2311.3 2311.4 2311.5

Wavenumber (1/cm)

2.4 cm path length
 Measurement of [¹²CO₂]

2.4 m path length
 Measurement of [¹³CO₂]

Pulsed Quantum Cascade Lasers: Advantages and Drawbacks

Advantages

- Fundamental band (v₃) in mid-IR spectral region can be targeted
- DFB-QCLs provide sufficient selectivity ~ 3 to 300 MHz
- Compact, robust and tunable laser
- No need for cryogenic cooling
- Less complex than other laser based systems
- Drawbacks due to pulse mode operation
 - Dominant noise is pulse-to-pulse intensity fluctuations
 - Larger laser linewidths due to thermal chirp

Comparison of CO₂ line selection and strategy for different current US mid-IR laser-based isotopic ratiometers

Group	Technology	Frequency 12/13 [cm ⁻¹]	δ Τ [K]	Precision
NCAR, UC and Rice U. A. Fried et al; Erdelyi	DFG with NIR TDLs and fiber amplifiers	2299.642 2299.795	0.005	0.8 %*
Aerodyne, Harvard U. M. Zahniser et al.	Direct Scan PbSalt TDL, QCL, DFG; Dual optical paths	2314.304 2314.408	0.213	0.2 ‰
Physical Sciences D. Sonnenfroh et al	QCL	2318.1		0.5 to 1‰
Rice University Tittel et al	QCL Dual optical paths	2311.105 2311.399	181 Very large	<1 ‰
U. of Utah Bowling, Picarro	PbSalt TDLs Campbell Scientific Instrum.	2308.225 2308.171	0.006	0.2 ‰
JPL C. Webster	TDLs and QCL, LAS	2303.7 2303.5	0.007	TBD ‰
NASA-Ames Becker et al; Jost, LGR	Direct Scan PbSalt TDLs & QCLs with ICOS	2291.542 2291.680	0.004	4 ‰

^{*} Erdelyi, Richter, and Tittel, Appl. Phys. **B75**, 289 (2002)

Dual optical pathlength configuration for a Herriott gas absorption cell

Required Temperature Stability

Sensitivity Criteria of Spectrometer to Experimental Parameters

Concentration retrieval by line integration

$$C = \frac{\int \alpha dv \cdot R \cdot T}{L \cdot S \cdot N_A \cdot P}$$

Path length tolerance

 $\Delta L=2.4 \mu m$

Pressure tolerance

 $\Delta P > 5 \text{ mT}$

- Water vapor-CO₂ collision broadening
 - \Rightarrow Need for a water trap

Spectrometer noise will ultimately limit $\Delta\delta$

QC laser based Isotopic Ratio Sensor Layout

TEC IR detectors

Bread board: 12x18" (30x45 cm)

The sensor must be operated in a dry nitrogen atmosphere to eliminate atmospheric CO₂ background

QC laser based CO₂ isotopic ratio gas sensor

Data acquisition and control system flow chart

Protocol of CO₂ Isotopic Ratio Measurements

• 1st step 12CO₂ & 13CO₂ Reference CO₂ QC Laser Scan flowing concentration Recording of spectra in the cell measurement Delta • 2nd step value Sample CO₂ 12CO₂ & 13CO₂ QC Laser Scan flowing concentration

Recording of spectra

measurement

in the cell

Characterization of Pulsed DFB-Quantum Cascade Laser at ~2320 cm⁻¹ (4.3 um)

QCL I-V-L data from Alpes

CO₂ Spectrum taken at Rice

Atmospheric CO_2 I = 10 A; pulse width 15 ns

¹⁶O¹²C¹⁸O Spectra at 2320.2 cm⁻¹

NCAR Biocomplexity System: Architecture of DFG based ¹²CO₂/¹³CO₂ gas sensor

Conclusions and Future Outlook

- QC laser based isotopic CO₂ ratiometer has been built
- Line pair selected for this work is insensitive to temperature variations (balanced detection)
- Dual path length approach
- Compact and LN₂ free-instrument
- $1^0/_{00}$ is initially targeted, $0.1^0/_{00}$ may require a three channel configuration
- Volcanic gas emission studies in Italy and US are planned
- Design, construction and evaluation DFG based system ratiometer is in progress (NSF funded 2003-2005 collaboration: NCAR-UC-Rice)
- Several DoE & NASA funded instrumentation projects are being pursued (Harvard-Aerodyne, Ames-LGR, JPL, Picarro-UU, PSI)

Seed Diode Laser and Driver platform

NASA Atmospheric & Mars Gas Sensor Platforms

Tunable laser sensor for earth's stratosphere

Aircraft laser absorption spectrometer

Tunable laser planetary spectrometer

