Infrared laser based sensor technology for ¹³CO₂/¹²CO₂ isotopic ratio measurements: opportunities and challenges F. K. Tittel, D. Weidmann, C. B. Roller, R. F. Curl Rice University, 6100 Main Street, Houston, TX, 77005, USA http://www.ece.rice.edu/lasersci **SIRIS 2004** Vienna Sept 6-8, 2004 - Motivation for measuring ¹³CO₂/¹²CO₂ Isotopic Ratios - Selection of optimum CO₂ Absorption Line Pairs - Quantum Cascade Laser based Sensor Design in the 2300 cm⁻¹ Spectral Region - Current Status of QCL based CO₂ Isotopic Ratio Spectrometer - Future Outlook and Conclusions ### Motivation for Measuring ¹³CO₂/¹²CO₂ Isotopic Ratios - Volcano eruption forecasting and gas emission studies (CO₂,HCl,SO₂,HF,H₂S,CO,H₂O) - Atmospheric Chemistry: Environmental monitoring of C_y gases (CO₂,CO,CH₄) - Global warming studies - > Temporal and spatial variations of the isotopic ratios - > Identification of carbon sources and sinks - Global carbon budget studies - Study of planetary gases (CO,CO2,H₂O,NH₃) - Medical applications (Non-invasive breath analysis) - Combustion diagnostics - Biology (Photosynthesis) #### Volcanological application - CO₂ the most abundant component of volcanic gases after H₂O - δ¹³C is a sensitive tracer of magmatic vs. hydrothermal or groundwater contributions to volcanic gases - Monitoring δ^{13} C can be used in eruption forecasting #### Isotopic Ratio Measurement Techniques - Current standard technique: Isotope Ratio Mass Spectrometry (IRMS) $\Delta\delta \sim 0.01$ -0.05 $^{0}/_{00}$ - Small mass differences are difficult to measure - Not real time - Not field deployable - Complex sample preparation and sample destruction - Fourier Transform Spectroscopy $\Delta\delta \sim 0.1$ -0.2 $^{0}/_{00}$ - Not selective for compact and intermediate sized platform - Tunable Laser Absorption Spectroscopy $\Delta\delta \sim 0.2^{-0}/_{00}$ - Lead salt lasers - Difference Frequency Generation - Near-infrared diode - mid-infrared quantum cascade lasers ### Requirements for a Field Deployable CO₂ Isotopic Ratio Sensor - General design features for an isotopic ratio sensor include: - High precision - > Temperature stability of cell - > Pressure stability - > Humidity effects due to CO₂-H₂O collision broadening - > Real-time measurements and self calibrating - Rugged, compact construction for field use - > Portable and easy to use by a single operator - > Low power consumption - > Low cost - Low maintenance - > Room temperature (TEC) operation with DFB QC lasers - > Room temperature (TEC) detectors. - Need to reduce pressure broadening by means of extractive sampling - Calibration capability (zero and reference standards) - Availability of lasers may limit choice of operating lines and impact cell design #### Target Specifications for CO₂ Isotopic Ratio Sensor - The CO_2 isotope spectrometer will have a precision in $\delta^{13}CO_2$ of 1‰ or better - Adding a third channel would improve precision to $0.1^{0}/_{00}$ by canceling pulse-to-pulse fluctuations | Parameter | CO ₂ Isotope Sensor | | | | | |-----------|--------------------------------|-------------------|--|--|--| | | 12CO ₂ | 13CO ₂ | | | | | Range | 0 to 1000
ppmv | 0 to 10 ppmv | | | | | Precision | ≤ 0.3 ppmv | ≤ 0.004
ppmv | | | | | Size | 40x40x50 cm ³ | | | | | #### CO₂ Absorption Line Selection Criteria - Two strategies: - Similar strong absorption of ¹²CO₂ and ¹³CO₂ lines - > Very sensitive to temperature variations - Similar transition lower energies - ➤ Requires a dual path length approach to compensate for the large difference in concentration between major and minor isotopic species - Both absorption lines must lie in a laser frequency scan window - Avoid presence of other interfering atmospheric trace gas species # Ro-vibrational bands suitable for ¹²CO₂/¹³CO₂ ratio measurements # HITRAN Simulation of Selected 2311 cm⁻¹ CO₂ Lines (Dual path length approach) #### Calculations for CO₂ present in volcanic fumarolic gases 13CO₂ 1% CO₂ 2.4 m path length 50 torr total pressure 310.9 2311.0 2311.1 2311.2 2311.3 2311.4 2311.5 Wavenumber (1/cm) 2.4 cm path length Measurement of [¹²CO₂] 2.4 m path length Measurement of [¹³CO₂] ### Pulsed Quantum Cascade Lasers: Advantages and Drawbacks #### Advantages - Fundamental band (v₃) in mid-IR spectral region can be targeted - DFB-QCLs provide sufficient selectivity ~ 3 to 300 MHz - Compact, robust and tunable laser - No need for cryogenic cooling - Less complex than other laser based systems - Drawbacks due to pulse mode operation - Dominant noise is pulse-to-pulse intensity fluctuations - Larger laser linewidths due to thermal chirp ## Comparison of CO₂ line selection and strategy for different current US mid-IR laser-based isotopic ratiometers | Group | Technology | Frequency
12/13 [cm ⁻¹] | δ Τ [K] | Precision | |---|--|--|----------------------|--------------| | NCAR, UC and Rice U.
A. Fried et al; Erdelyi | DFG with NIR TDLs and fiber amplifiers | 2299.642
2299.795 | 0.005 | 0.8 %* | | Aerodyne, Harvard U.
M. Zahniser et al. | Direct Scan PbSalt TDL, QCL, DFG; Dual optical paths | 2314.304
2314.408 | 0.213 | 0.2 ‰ | | Physical Sciences D. Sonnenfroh et al | QCL | 2318.1 | | 0.5 to
1‰ | | Rice University
Tittel et al | QCL
Dual optical paths | 2311.105
2311.399 | 181
Very
large | <1 ‰ | | U. of Utah
Bowling, Picarro | PbSalt TDLs
Campbell Scientific Instrum. | 2308.225
2308.171 | 0.006 | 0.2 ‰ | | JPL
C. Webster | TDLs and QCL, LAS | 2303.7
2303.5 | 0.007 | TBD ‰ | | NASA-Ames Becker et al; Jost, LGR | Direct Scan PbSalt TDLs & QCLs with ICOS | 2291.542
2291.680 | 0.004 | 4 ‰ | ^{*} Erdelyi, Richter, and Tittel, Appl. Phys. **B75**, 289 (2002) #### Dual optical pathlength configuration for a Herriott gas absorption cell ### Required Temperature Stability #### Sensitivity Criteria of Spectrometer to Experimental Parameters Concentration retrieval by line integration $$C = \frac{\int \alpha dv \cdot R \cdot T}{L \cdot S \cdot N_A \cdot P}$$ Path length tolerance $\Delta L=2.4 \mu m$ Pressure tolerance $\Delta P > 5 \text{ mT}$ - Water vapor-CO₂ collision broadening - \Rightarrow Need for a water trap Spectrometer noise will ultimately limit $\Delta\delta$ ### QC laser based Isotopic Ratio Sensor Layout #### **TEC IR detectors** Bread board: 12x18" (30x45 cm) The sensor must be operated in a dry nitrogen atmosphere to eliminate atmospheric CO₂ background #### QC laser based CO₂ isotopic ratio gas sensor #### Data acquisition and control system flow chart #### Protocol of CO₂ Isotopic Ratio Measurements • 1st step 12CO₂ & 13CO₂ Reference CO₂ QC Laser Scan flowing concentration Recording of spectra in the cell measurement Delta • 2nd step value Sample CO₂ 12CO₂ & 13CO₂ QC Laser Scan flowing concentration Recording of spectra measurement in the cell # Characterization of Pulsed DFB-Quantum Cascade Laser at ~2320 cm⁻¹ (4.3 um) QCL I-V-L data from Alpes CO₂ Spectrum taken at Rice Atmospheric CO_2 I = 10 A; pulse width 15 ns ### ¹⁶O¹²C¹⁸O Spectra at 2320.2 cm⁻¹ # NCAR Biocomplexity System: Architecture of DFG based ¹²CO₂/¹³CO₂ gas sensor #### Conclusions and Future Outlook - QC laser based isotopic CO₂ ratiometer has been built - Line pair selected for this work is insensitive to temperature variations (balanced detection) - Dual path length approach - Compact and LN₂ free-instrument - $1^0/_{00}$ is initially targeted, $0.1^0/_{00}$ may require a three channel configuration - Volcanic gas emission studies in Italy and US are planned - Design, construction and evaluation DFG based system ratiometer is in progress (NSF funded 2003-2005 collaboration: NCAR-UC-Rice) - Several DoE & NASA funded instrumentation projects are being pursued (Harvard-Aerodyne, Ames-LGR, JPL, Picarro-UU, PSI) #### Seed Diode Laser and Driver platform #### NASA Atmospheric & Mars Gas Sensor Platforms Tunable laser sensor for earth's stratosphere #### Aircraft laser absorption spectrometer Tunable laser planetary spectrometer