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Motivation for Measuring 13CO,/12CO,
Isotopic Ratios

e Volcano eruption forecasting and gas emission
studies (CO,,HCI,SO,,HF,H,S,CO,H,0)
e Atmospheric Chemistry: Environmental monitoring of
C, gases (CO,,CO,CH,)
= Global warming studies

» Temporal and spatial variations of the isotopic ratios
» Identification of carbon sources and sinks

» Global carbon budget studies
e Study of planetary gases (CO,C0O2,H,0,NH)
e Medical applications (Non-invasive breath analysis)
e Combustion diagnostics
e Biology (Photosynthesis)




Volcanological application

e (O, the most abundant
component of volcanic gases after
H,O

e B13Cis a sensitive tracer of
magmatic vs. hydrothermal or
groundwater contributions to
volcanic gases

e Monitoring 613C can be used in
eruption forecasting
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Isotopic Ratio Measurement Techniques

e Current standard technique: Isotope Ratio Mass
Spectrometry (IRMS) A6~0.01-0.05 9/,,

= Small mass differences are difficult to measure

= Not real time

= Not field deployable

= Complex sample preparation and sample destruction

* Fourier Transform Spectroscopy Ad~0.1-0.2 9/,
= Not selective for compact and intermediate sized platform

e Tunable Laser Absorption Spectroscopy Ad~0.2 9/,
m Lead salt lasers
» Difference Frequency Generation
= Near-infrared diode
= Mid-infrared quantum cascade lasers

4  Kerstel et al




Requirements for a Field Deployable CO,
Isotopic Ratio Sensor

e (General design features for an isotopic ratio sensor include:
= High precision
» Temperature stability of cell
> Pressure stability
> Humidity effects due to CO,-H,0 collision broadening
> Real-time measurements and self calibrating

= Rugged, compact construction for field use
» Portable and easy to use by a single operator
» Low power consumption

> Low cost

= Low maintenance
» Room temperature (TEC) operation with DFB QC lasers
» Room temperature (TEC) detectors.

e Need to reduce pressure broadening by means of extractive
sampling

e (Calibration capability (zero and reference standards)

* Availabili I 8f lasers may limit choice of operating lines and Y
impact cell design <@
RICE



Target Specifications for CO, Isotopic Ratio Sensor

e The CO, isotope spectrometer will have a precision
in 813CO, of 1%o or better

e Adding a third channel would improve precision to
0.19/,, by canceling pulse-to-pulse fluctuations

Parameter CO, Isotope Sensor
12CO, 13C0,
Range 0to 1000 |0 to 10 ppmv
ppmv
Precision < 0.3 ppmv < 0.004
ppmv
Size 40x40x50 cm3




CO, Absorption Line Selection Criteria

e Two strategies:
B Similar strong absorption of 12CO, and 13CO, lines
» Very sensitive to temperature variations

B Similar transition lower energies

» Requires a dual path length approach to compensate for the
large difference in concentration between major and minor

isotopic species
e Both absorption lines must lie in a laser
frequency scan window
e Avoid presence of other interfering atmospheric
trace gas species




Ro-vibrational bands suitable for 2CO,/13CO,
ratio measurements
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HITRAN Simulation of Selected 2311 cm* CO, Lines
(Dual path length approach)

Calculations for CO, present in volcanic fumarolic gases
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Pulsed Quantum Cascade Lasers:
Advantages and Drawbacks

e Advantages

= Fundamental band (v5) in mid-IR spectral region
can be targeted

= DFB-QCLs provide sufficient selectivity ~ 3 to 300
MHz

» Compact, robust and tunable laser
= No need for cryogenic cooling
= |Less complex than other laser based systems

e Drawbacks due to pulse mode operation

= Dominant noise is pulse-to-pulse intensity
fluctuations

= Larger laser linewidths due to thermal chirp




Comparison of CO, line selection and strategy for different current
US mid-IR laser-based isotopic ratiometers

—

Frequency

Group Technology 12/13 [cm1] | 6T [K] | Precision
NCAR, UC and Rice U. | DFG with NIR TDLs and | 2299.642 0.005 | 0.8 %o*
A. Fried et al; Erdelyi | fiber amplifiers 2299.795
Aerodyne, Harvard U. | Direct Scan PbSalt TDL, QCL, | 2314.304 0.213 | 0.2 %o
M. Zahniser et al. DFG; Dual optical paths 2314.408
Physical Sciences QCL 2318.1 0.5to
D. Sonnenfroh et al 1%o0
Rice University QCL 2311.105 181 <1 %o
Tittel et al Dual optical paths 2311.399 ::‘;2;
U. of Utah PbSalt TDLs 2308.225 0.006 |0.2 %o
Bowling, Picarro Campbell Scientific Instrum. |2308.171
JPL TDLs and QCL, LAS 2303.7 0.007 | TBD %o
C. Webster 2303.5
NASA-Ames Becker et | Direct Scan PbSalt TDLs & 2291.542 0.004 |4 %o
al; Jost, LGR QCLs with ICOS 2291.680

* Erdelyi, Richter, and Tittel, Appl. Phys. B75, 289 (2002)




Dual optical pathlength configuration for a
Herriott gas absorption cell
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Required Temperature Stability
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Sensitivity Criteria of Spectrometer to
Experimental Parameters

e Concentration retrieval by line integration

Jadv -R-T
C =
L-S-N,-P
» Path length tolerance AL=2.4 um
= Pressure tolerance AP>5 mT

= Water vapor-CO, collision broadening
= Need for a water trap

Spectrometer noise will ultimately limit A8




QC laser based Isotopic Ratio Sensor Layout

TEC IR detectors
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Bread board: 12x18” (30x45 cm)
The sensor must be operated in a dry nitrogen atmosphere

to eliminate atmospheric CO, background
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QC laser based CO, isotopic ratio gas sensor

Optical Head




Data acquisition and control system flow chart
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Protocol of CO, Isotopic Ratio Measurements

e st step

Reference CO, 12CO, & 13CO,

flowing =) QC Laser Scan = >| concentration %

Recording of spectra

in the cell measurement
Delta
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flca)wine 2 = ¥ aser Scan B e I!___ﬂ>
. 9 Recording of spectra concentration
in the cell measurement
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Characterization of Pulsed DFB-Quantum Cascade
Laser at ~2320 cm™ (4.3 um)

* QCL I-V-L data from Alpes e CO, Spectrum taken at Rice
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16012C18Q Spectra at 2320.2 cm'?
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NCAR Biocomplexity System: Architecture of DFG
based 12CO,/13CO, gas sensor
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Frequency converter

4.34 ym
P~0.05 mW

* Dual pass cell (80 cm)
* Fixed amplifier

* Novel collection approach
* TEC PV MCT detector
* DFG imaging
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Conclusions and Future Outlook

QC laser based isotopic CO, ratiometer has been built

Line pair selected for this work is insensitive to
temperature variations (balanced detection)

e Dual path length approach
e Compact and LN, free-instrument

19/, is initially targeted, 0.1%/,, may require a three
channel configuration

Volcanic gas emission studies in Italy and US are
planned

Design, construction and evaluation DFG based
system ratiometer is in progress (NSF funded 2003-
2005 collaboration: NCAR-UC-Rice)

Several DoE & NASA funded instrumentation projects

are being pursued (Harvard-Aerodyne, Ames-LGR, &l

JPL, Picarro-UU, PSI) <
RICE



Seed Diode Laser and Driver platform




NASA Atmospheric & Mars Gas Sensor Platforms

Aircraft laser absorption spectrometer

@ Deyden Flight Research Center EC97-44358-2 Photographed 290EC1987 Q
Douglas DC- 8 Alrborne Laboratory arrival at Oryden (NASA/Tony Landis)

Tunable laser planetary spectrometer

Tunable laser sensor for
24 earth’s stratosphere




