

Future Directions of Stable Isotopic Ratio Infrared Spectrometry (SIRIS)

F. K. Tittel, C. B. Roller, D. Weidmann,
Rice University, 6100 Main Street, Houston, TX, 77005, USA
http://www.ece.rice.edu/lasersci

SIRIS 2004

Vienna

Sept 6-8, 2004

- Motivation for SIRIS measurements
- Critical Requirements for IRIS Techniques
- Examples of IRIS Applications
 - NCAR Mid-Infrared DFG based CO₂ Isotopic Ratio
 Spectrometer: Current Status
 - NASA Mid and Near Infrared SIRIS instrumentation Needs
 - Industrial: Aerodyne, Physical Sciences, Picarro, Wagner
- General Discussions
- Conclusions

Future Directions of Stable Isotopic Ratio Infrared Spectrometry

- IRIS Applications
 - Atmospheric and planetary sciences
 - > Environmental monitoring
 - Medical & Pharmaceutical
 - Geochemistry
- Targeted isotopic species
 - Water , CO₂, CH₄, N₂O, CO
- Infrared Spectrometry
 - Optical Enhancement Techniques
 - Infrared Spectroscopic Sources and Detectors
 - Advanced Pre-Concentrator Technology

Critical Subsystems for IRIS

Spectroscopic sources

- Near infrared diode lasers
- Lead salt diode lasers
- Quantum and Interband cascade lasers
- Nonlinear Frequency Conversion (DFG, OPO)
- Solid state lasers

Enhancement Techniques

- Absorption spectroscopy (WMS)
- Photoacoustic spectroscopy
- Cavity enhanced spectroscopy
- NICE OHMES

Primary requirement for IRIS techniques

- Sensitivity 0.01% 10⁻⁶ levels (precision accuracy)
- Selectivity
- Rapid response time
- Autonomous, unattended, remote operation and control
- Self calibrating
- Cost of ownership
- Low weight, small size, low power consumption
- Easy to use (avoid complexity)

IRIS System Considerations

- Design and Architecture (COTS based system)
- Precision and Accuracy (Temperature, Pressure and Humidity
- Inlet design
 - Gas sampling (local-remote)
 - Filtering and pre-concentration
 - Calibration
- Data acquisition and signal processing
 - Ethernet and GPS option
- Intercomparison with IRMS and FTIR (0.01
 - 0.05% range)

Motivation

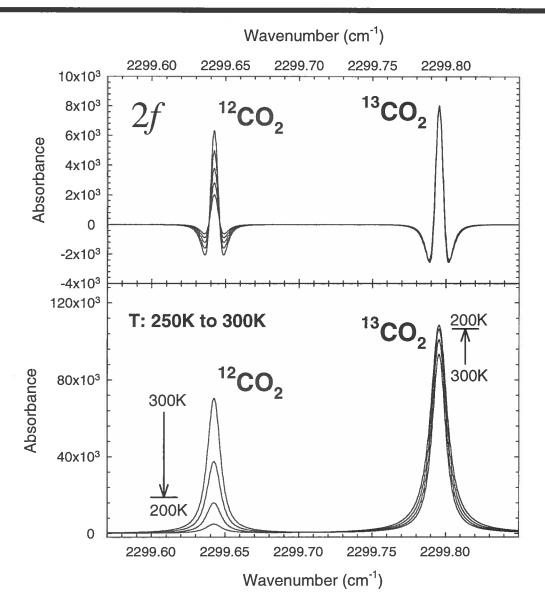
- Study of the Carbon Cycle: Land, Ocean, Atmosphere
- Combustion of fossil fuels increase atmospheric CO₂ levels and in turn global temperatures
- Currently, oceanic and terrestrial biospheres absorb 50% of anthropogenic atmospheric carbon. Will the sinks cease to take up CO₂?
- Major sources and sinks have been identified, but their specific mechanisms are still unclear
- Flexible and real time sensor is needed.
- Bring the instrument to the sample:
 Land, sea, troposphere, stratosphere,
 planets!

NCAR C-130

Accurate measurements of ^{12/13}CO₂ ratios and other trace gases are key to attain detailed knowledge on carbon cycle processes

Equal Strengths or Equal Lower-State Energies?

Most preferred method is balanced detection with isotopic lines of near equal lower-state energies (LSE)

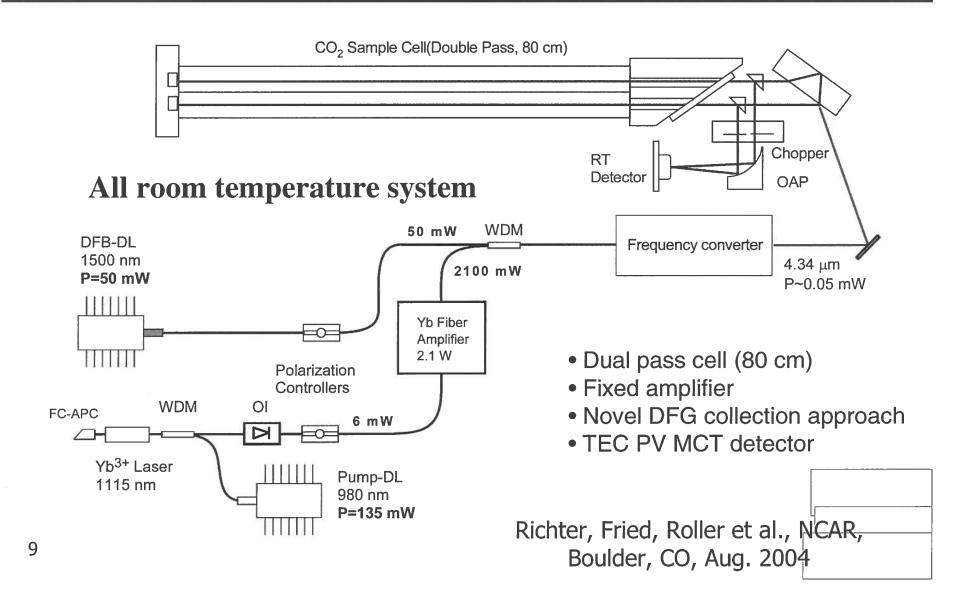

- Achieved best precisions for laser spectroscopy reported to date, ~0.02‰ (Uehara et. al. 2002)
- Requires varying optical pathlengths to balance line absorption strengths (e.g. 1m and 100m)
- Disadvantages:
 - Achieving 100-meters requires large volume
 - Expensive and difficult to operate a separate reference cell of known ^{13/12}CO₂ precision with dual pathlengths

2260 2300 2320 2360 2380 2400 ¹²CO₂ Intensity (cm⁻¹/mol. x cm⁻²) 10-16 $(00^{0}1) - (00^{0}0)$ 10-17 13_{CO2} 10-18 $(00^{\circ}1) - - (00^{\circ}0)$ 10-19 10-20 10-22 2240 2260 2280 2300 2320 2340 2360 2380 2400 2000 Lower-State Energy (cm⁻¹) 1000 500 2260 2280 2300 2320 2360 2380 2240 Wavenumber (cm⁻¹)

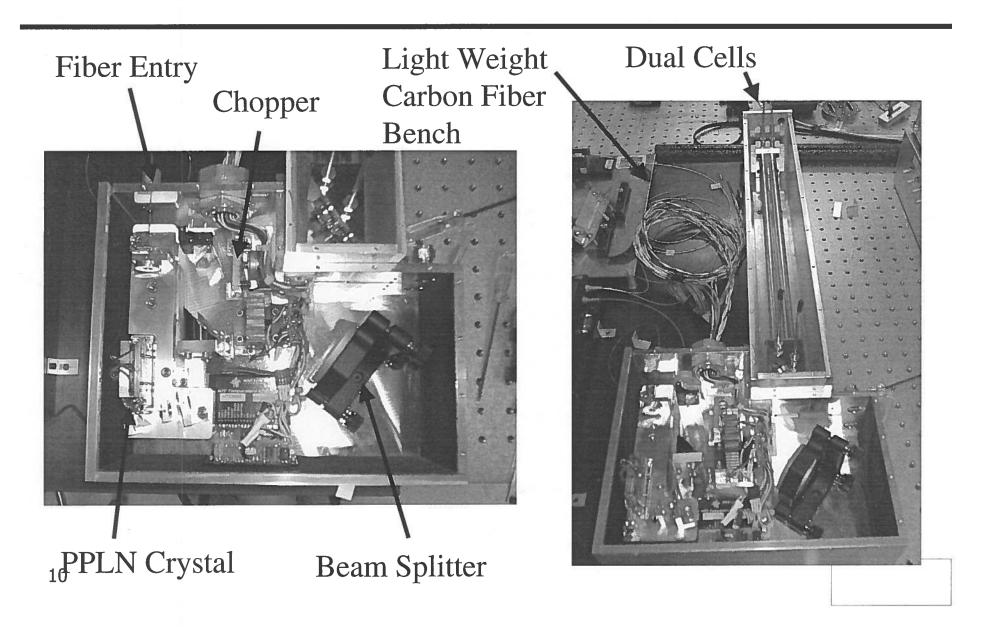
Wavenumber (cm⁻¹)

We will use equal lines to investigate the advantages of such an approach

Temperature Dependence of Equal Line Strengths


Beer's Law

$$I = I_0 e^{-\alpha.c.L}$$


$$\Delta T = \frac{\Delta \delta k T^2}{\Delta E}$$

$$\Delta \delta^{13}$$
 ΔT
 $0.1^{\circ}/_{\circ \circ}$ --> 6 mK
 $0.05^{\circ}/_{\circ \circ}$ --> 3 mK

NCAR Mid-IR Isotopic Ratio Spectrometer

Current DFG based IRS System

Conclusions

- DFG is a possible approach to ^{13/12}CO₂ measurements of CO2 absorbion features of near equal intensities
- The DFG system is liquid-N₂ free
- Balanced line strengths, while sensitive to temperature, offers more flexible gas sampling
- Also provides identical optical baseline background
- Analysis of lines shows a strong temperature dependence on per-mil precisions
- What's next: Perform measurements with new DFG system and absorption cell to assess performance and issues

NASA Mid-IR and Near-IR in situ Instrumentation Needs

- Atmospheric and Planetary Sciences
 - Global CO $_2$ mapping in near-IR at 1.57 μ m (30012<-00001) band and 2.05 μ m (30013<-00001) band as well as in the 4.3 μ m v_3 fundamental band
 - Environmental monitoring
 - Climate monitoring and diagnostics (carbon cycle greenhouse gases)
- Astronaut Habitat Environmental Monitoring
 - Fire detection and control
 - Air quality in spacecraft habitats

