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Abstract: Development of trace gas sensors based on mid-infrared interband cascade lasers and 

quantum cascade lasers as well as their applications will be reported. The sensor technology will 

use both laser absorption and quartz enhanced photoacoustic spectroscopy. 
OCIS codes: 280.4788   Optical sensing and sensors; 300.6360   Spectroscopy, laser; 280.3420   Laser sensors 

 

1. Introduction 

The recent development of compact interband cascade lasers(ICLs)  and quantum cascade lasers (QCLs) based 

trace gas sensors will permit the targeting of strong fundamental rotational-vibrational transitions in the mid-infrared 

which are one to two orders of magnitude more intense than transitions in the overtone and combination bands in the 

near-infrared. This has led to the design and fabrication of mid-infrared compact, field deployable sensors for use in 

the petrochemical industry, environmental monitoring, atmospheric chemistry, life sciences, medical diagnostics, 

defense and security. Specifically, the spectroscopic detection and monitoring of four molecular species, methane 

(CH4) [1-4], ethane (C2H6), formaldehyde (H2CO) [5-6] and hydrogen sulphide (H2S) [7-8] will be described. 

2. Measurement Techniques  

CH4, C2H6 and H2CO can be detected using two detection techniques: mid-infrared tunable laser absorption 

spectroscopy (TDLAS) using a compact multi-pass gas cell and quartz enhanced photoacoustic spectroscopy 

(QEPAS) (Fig. 1a). Both techniques utilize state-of-the-art mid-IR, continuous wave (CW), distributed feedback 

(DFB) ICLs and QCLs. TDLAS was performed with an ultra-compact 54.6m effective optical path length 

innovative spherical multipass gas cell capable of 435 passes between two concave mirrors separated by 12.5 cm. 

QEPAS used a small robust absorption detection module (ADM) which consists of a quartz tuning fork (QTF), two 

optical windows, gas inlet/outlet ports and a low noise frequency pre-amplifier. Wavelength modulation and second 

harmonic detection were employed for spectral data processing.  

a) 

 

b)  

 
Fig. 1. (a) Normalized noise equivalent absorption coefficients (NNEA) results (vertical scale) obtained with QEPAS sensors for trace gas species  
versus wavelengths (horizontal scale in µms) in the UV-Vis, near-IR, mid-IR and THz spectral ranges of commercially available mid-IR laser 

sources. The red star symbol (*) marks the result obtained with the custom QTF with new geometry. (b) Stick H2S spectrum as obtained from the 

HITRAN database [9]. 
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TDLAS and QEPAS can achieve minimum detectable absorption losses in the range from 10
-8

 to 10
-11

cm
-1

/Hz
1/2

. 

Several recent examples of real world applications of field deployable gas sensors will be described. For example, 

an ICL based TDLAS sensor system is capable of detecting CH4 and C2H6 concentration levels of 1 ppb in a 1 sec. 

sampling time, using an ultra-compact, robust sensor architecture. H2S detection (Fig. 1b) was realized with a THz 

QEPAS sensor system using a custom quartz tuning fork (QTF) with a new geometry and a QCL emitting at 2.913 

THz [7]. 

Furthermore, two new approaches aimed to achieve enhanced detection sensitivities with QEPAS based sensing 

can be realized. The first method will make use of a compact optical power buildup cavity (see Fig. 2), which 

achieves significantly lower minimum detectable trace gas concentration levels of < 10 pptv. The second approach 

will use custom fabricated QTFs capable of improved detection sensitivity [10].  

a) 

 

b)  

 
Fig. 2. (a) Compact intra cavity QEPAS stainless ADM module, resulting in a ~ 5000 fold power enhancement. (b) A red diode laser beam was 
used for alignment of the mid-IR ICL and QCL pump beams. 
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