

Tunable Laser for Methane Sensing

F. K. Tittel, A. Hudzikowski, A. Glusszek J. Wojtas Dept. of Electrical & Computer Engineering, Rice University, Houston, TX 77005;

http://www.ece.rice.edu/~lasersci/

ARPA-E #1128-1549 Dec. 9, 2015

- Novel Laser-Based Trace Gas Sensor Technology
 - Mid-IR TDLAS based on a Novel Multipass Gas Cell Design
- Examples of three Mid-infrared Trace Gas Species
 - CH_4 , CH4 isotopes & C_2H_6 ,
- Future Directions and Conclusions
 - XXXXXX

Houston, TX, 77005

Mid-IR Source Requirements for Laser based Gas Sensing

REQUIREMENTS	IR LASER SOURCE
Sensitivity (% to pptv)	Optimum Wavelength and Power
Selectivity (Spectral Resolution) or Specificity	Stable Single Mode Operation and Narrow Linewidth
Multi-gas Components, Multiple Absorption Lines, and Broadband Absorbers	Mode Hop-Free Wavelength Tunability
Directionality or Cavity Mode Matching	Beam Quality
Rapid Data Acquisition	Fast Time Response Time
Room Temperature Operation	High Wall Plug Efficiency, No Cryogenics or Cooling Water
Field Deployable in Harsh Environments	Compact and Robust

Key Characteristics of Mid-IR QCL & ICL Sources – Dec. 2015

Band – structure engineered devices

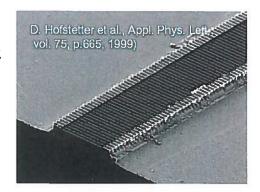
Emission wavelength is determined by layer thickness – MBE or MOCVD; QCLs operate in the 3 to 24 µm spectral region and ICLs can cover the 3 to 6 µm spectral range.

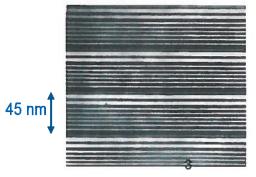
- Compact, reliable, stable, long lived, and commercially available
- Fabry-Perot (FP), single mode (DFB) and multi-wavelength devices

Wide spectral tuning ranges in the mid-IR

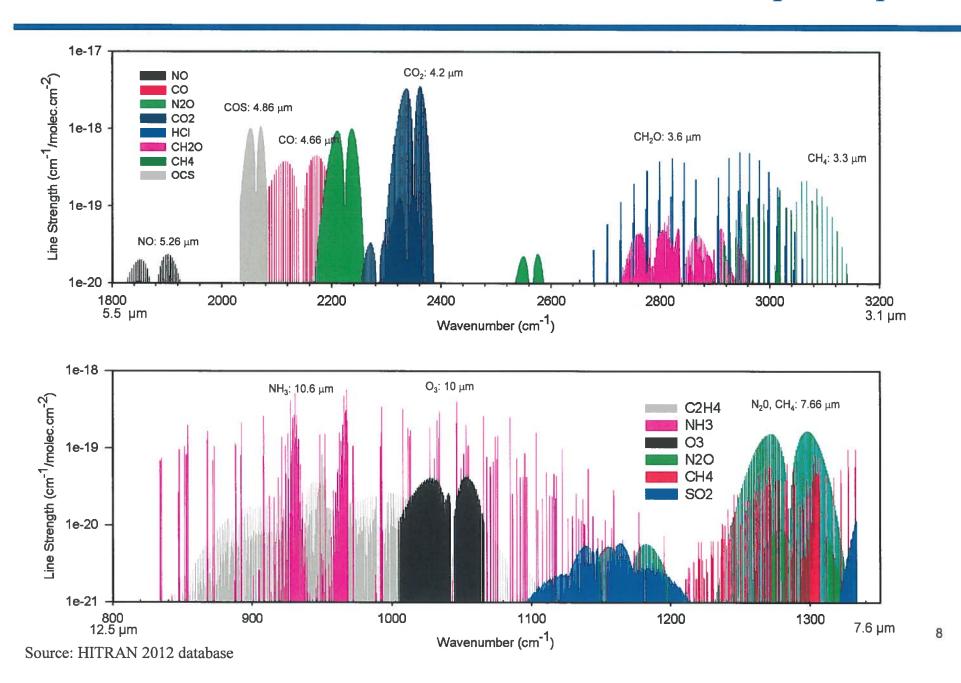
- 1.5 cm⁻¹ using injection current control for DFB devices
- 10-20 cm⁻¹ using temperature control for DFB devices
- ~100 cm⁻¹ using current and temperature control for QCLs DFB Array
- ~ 525 cm⁻¹ (22% of c.w.) using an external grating element and FP chips with heterogeneous cascade active region design; also QCL DFB array & Optical Frequency Combs (OFCs) > 100 to <450 cm⁻¹ with kHz to sub-kHz resolution and a comb spacing of > 10 GHz

Narrow spectral linewidths

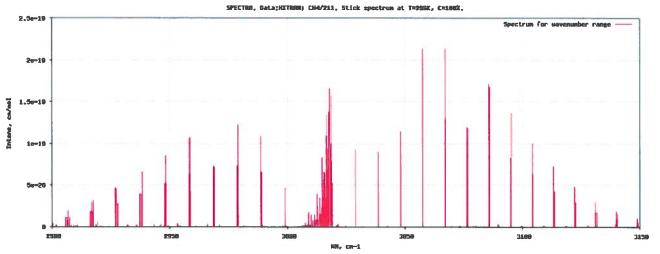

- CW: 0.1 3 MHz & <10kHz with frequency stabilization Pulsed: ~300 MHz

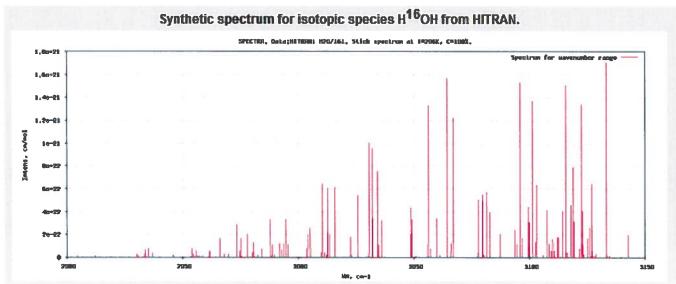

CW powers of QCLs & ICLs at RT temperature

- CW QCL powers of ~ 5 W with 23% wall plug efficiency at 293 K
- > 600 mW CW DFB at TEC/RT; wall plug efficiency 23% at 4.6 μm
- > 5mW CW, DFB ICL at TEC/RT



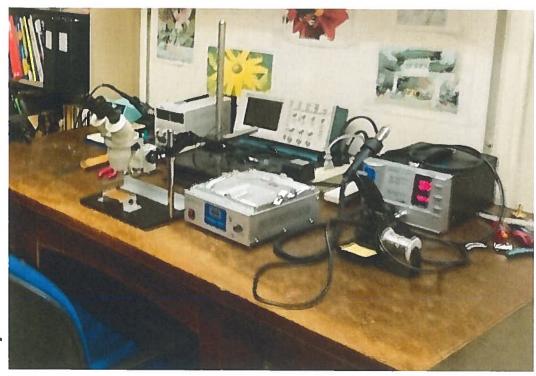
4 mm



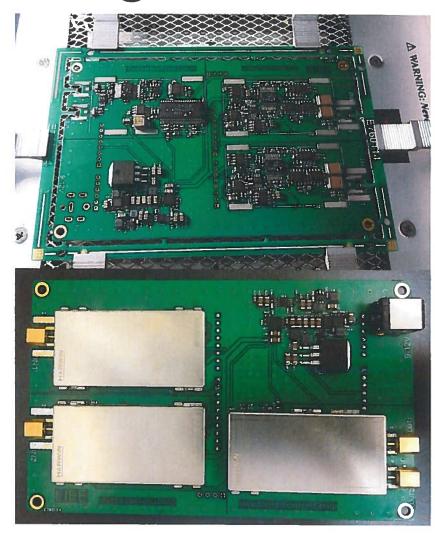


HITRAN Simulated Mid-Infrared Molecular Absorption Spectra

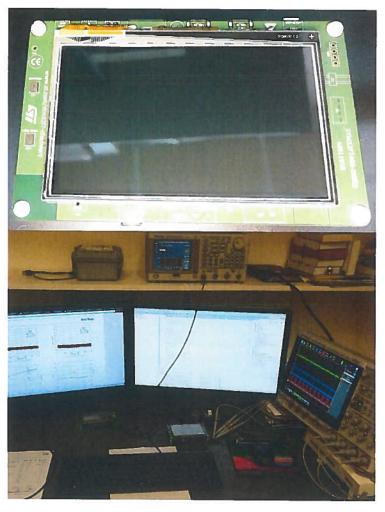
Methane and Water Spectra around 3.3 μm (based on HITRAN database)



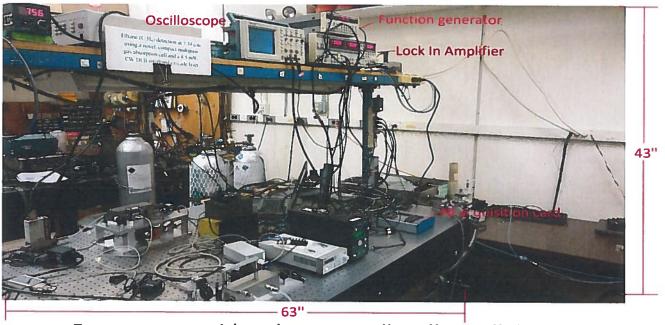
R branch has the stronger line strength with the interference from congested water lines, while P branch has the weaker line strength with few interference from water lines.


Completion of SMD rework station

- Soldering station
- Hot-Air gun
- Pre-heater station
- Microscope
- Set of hand tools
- Power supply
- Oscilloscope
- Arbitrary generator


2 channels analog Front End

- Making PCB
- 4 layers PCB
- Soldering elements
- Running PCB components
- Connecting to
 STM32F7 discovery



2 channels analog Front End

- Communication with STM32F7Discovery
- Connectinng boards
- Running ADC's
- Running DAC's
- Running configuration components

Current setup with many equipment

Future setup with only one small 5.2" x 3.2" device

Gaussian Dispersion Calculation* plume C from e (inverse of e from C)

Equation 1 Environ.Sci. Technol. 2015, 49, 7889-7895 (Aerodyne)

Goal: Autonomously locate and quantify leaks on the wellpad with higher precision and accuracy. 95% reduction in fugitive leaks

Technical approach:

Meteeorology at Site-wind speed and solar insolation Multipoint sampling system Sonic anemometer for wind velocity

Inverse modeling to locating leaks based at multiple locations plus wind velocity

Standard deviations of Mass distribution in a Gausian Plume *

*Chemical Fate and Transport in the Environment (sec Edition) H.F Hemond & E.J.Fechner-Levy Academic Press, 2000 Chapter 4, page 30

Goal: Autonomously locate and quantify leaks on the wellpad with higher precision and accuracy. 95% reduction in fugitive leaks

Technical approach:

Single, fixed Rice methane/ ethane gas sensor Multipoint sampling system Sonic anemometer for wind velocity

Inverse modeling to locating leaks based at multiple locations plus wind velocity

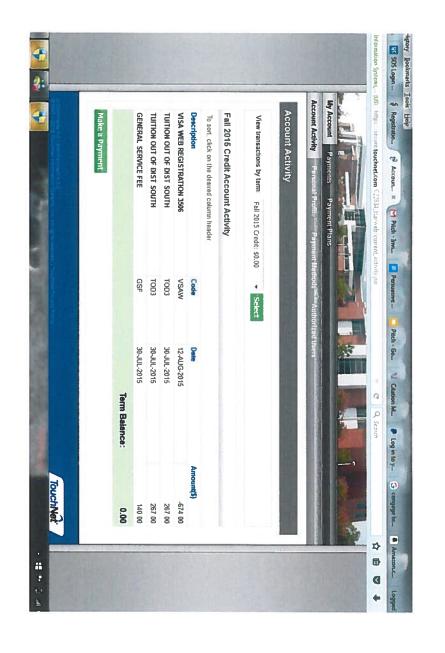
Natural Gas Leak Detection

Leak quantification and location:

- Wellpads
- Processing, Compression
- Distribution
- End use
- CH_4 , H_2O , C_2H_6
 - H₂O required for dry mole fraction: accurate background levels
 - C₂H₆ (1-5% Natural Gas) enabled immediate discrimination of thermo vs. biogenic sources

Potential Embodiments

- Fixed, in-situ
- Portable
- Mobile
- Airborne/ UAV/Drones


Autonomous Natural Gas Leak Detection System

Goal: Autonomously locate and quantify leaks on the wellpad with higher precision and accuracy. 95% reduction in fugitive leaks

Technical approach:

Single, fixed Rice methane/ ethane gas sensor Multipoint sampling system Sonic anemometer for wind velocity

Inverse modeling to locating leaks based at multiple locations plus wind velocity

