394. Tera Mir 2003/25 do 30 min. Mid-Infrared Laser based Gas Sensor Technologies for Environmental Monitoring, Medical Diagnostics. Industrial and Security Applications F. K. Tiţiel, R. Lewicki, M. Jahjah, B. Foxworth, Y. Ma, K. Krzempek, P. Stefanski & J. Tarka Electrical and Computer Engineering Department, http://ece.rice.edu/lasersci/ L. Gong & R. Griffin Civil and Environmental Engineering, Rice University, Houston, TX, USA - · New Laser Based Trace Gas Sensor Technology - Novel Multipass Absorption Cell & Electronics - Quartz Enhanced Photoacoustic Spectroscopy - Examples of Mid-Infrared Sensor Architectures - C₂H₆, NH₃, NO, CO, and SO₂ - Future Directions of Laser Based Gas Sensor Technology and Conclusions orlod by NSF ERC MIRTHE, NSF-ANR NewCILAS, the Rob ## Wide Range of Trace Gas Sensing Applications - Urban and Industrial Emission Measurements - Industrial Plants - Combustion Sources and Processes (e.g. fire detection) - Automobile, Truck, Aircraft and Marine Emissions - **Rural Emission Measurements** - Agriculture & Forestry, Livestock - **Environmental Monitoring** - Atmospheric Chemistry (e.g. measurement of isotopologues) - Volcanic Emissions - Chemical Analysis and Industrial Process Control - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries - Spacecraft and Planetary Surface Monitoring - · Crew Health Maintenance & Life Support - Applications in Medical Diagnostics and the Life Sciences - Technologies for Law Enforcement, Defense and Security - Fundamental Science and Photochemistry #### Laser based Trace Gas Sensing Techniques - Optimum Molecular Absorbing Transition - Overtone or Combination Bands (NIR) - Fundamental Absorption Bands (MID-IR) - Long Optical Pathlength - Multipass Absorption Cell (White, Herriot, Chernin) - Cavity Enhanced and Cavity Ringdown Spectroscopy - Open Path Monitoring (with retro-reflector): Standoff and Remote Detection - Fiberoptic Evanescent Wave Spectroscopy - Spectroscopic Detection Schemes - Frequency or Wavelength Modulation - Balanced Detection - Zero-air Subtraction - Photoacoustic & Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) ### Other spectroscopic methods - Faraday Rotation Spectroscopy (limited to paramagnetic chemical species) - Differential Optical Dispersion Spectroscopy (DODiS) - Noise Immune Cavity Enhanced-Optical Heterodyne Molecular Spectroscopy (NICE-OHMS) - · Frequency Comb Spectroscopy - · Laser Induced Breakdown Spectroscopy (LIBS) ## Mid-IR Source Requirements for Laser Spectroscopy | REQUIREMENTS | IR LASER SOURCE | |---|---| | Sensitivity (% to ppt) | Optimum Wavelength, Power | | Selectivity (Spectral Resolution) | Stable Single Mode Operation and
Narrow Linewidth | | Multi-gas Components, Multiple
Absorption Lines and Broadband
Absorbers | Mode Hop-free Wavelength
Tunability | | Directionality or Cavity Mode
Matching | Beam Quality | | Rapid Data Acquisition | Fast Time Response | | Room Temperature Operation | High wall plug efficiency, no cryogenics or cooling water | | Field deployable in harsh
environments | Compact, Robust, Packaging, Low
Noise | ## Improvements and New Capabilities of QCLs and ICLs - Optimum wavelength (> 3 to < 20 μ m) and power (>10 mw to < 1 W) at room temperature (>15 °C and < 30 °C) with state-of-the-art fabrication/processing methods based on MBE and MOCVD, good wall plug efficiency and lifetime (> 20,000 hours) for detection sensitivities from % to pptv with low electrical power budget - Stable single TEM₀₀ transverse and axial mode, CW and pulsed operation of mid-infrared laser sources (narrow linewidth of ~ 300 MHz to < 10kHz) - Mode hop-free ultra-broad wavelength tunability for detection of broad band absorbers and multiple absorption lines based on external cavity or mid-infrared semiconductor arrays - Good beam quality for directionality and/or cavity mode matching. Implementation of innovative collimation concepts. - · Rapid data acquisition based on fast time response - Compact, robust, readily commercially available and <u>affordable</u> in order to be field deployable in harsh operating environments (temperature, pressure, etc...) ## Motivation for NH₃ Detection - · Monitoring of gas separation processes - · Detection of ammonium-nitrate explosives - · Spacecraft related gas monitoring - Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques - · Semiconductor process monitoring & control - Monitoring of industrial refrigeration facilities - Pollutant gas monitoring - Atmospheric chemistry - Medical diagnostics (kidney & liver diseases) # Motivation for Nitric Oxide Detection - · Atmospheric Chemistry - Environmental pollutant gas monitoring - NO_x monitoring from automobile exhaust and power plant emissions - · Precursor of smog and acid rain - Industrial process control - Formation of oxynitride gates in CMOS Devices - NO in medicine and biology - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine) - Treatment of asthma, COPD, acute lung rejection - Photofragmentation of nitro-based explosives ## Motivation for Carbon Monoxide Detection - · Atmospheric Chemistry - Incomplete combustion of natural gas, fossil fuel and other carbon containing fuels. - Impact on atmospheric chemistry through its reaction with hydroxyl (OH) for troposphere ozone formation and changing the level of greenhouse gases (e.g. CH₄). - Public Health - Extremely dangerous to human life even at a low concentrations. Therefore CO must be carefully monitored at low concentration levels. - CO in medicine and biology - Hypertension, neurodegenerations, heart failure and inflammation have been linked to abnormality in CO metabolism and function. ## Summary and Outlook - Laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diodes and high performance DFB QCL is a promising analytical approach for real time atmospheric measurements and breath analysis. - Teachinologies (PSI), Hamamatsu, Northwestern University and AdtechOptics were used recently (2011-2012) by means of TDLAS, PAS and QEPAS - used recently (2017-2012) by ineats of 102AS, FAS and QEFAS Seven target trace gas species were detected with a 1 sec sampling time: C₂H₆ at ~3.36 µm with a detection sensitivity of 130 pptv using TDLAS Nil₃ at ~10.4 µm with a detection sensitivity of ~1 ppbv (200 sec averaging time): NO at ~5.26µm with a detection limit of 100 ppbv SO₂ at ~7.24µm with a detection limit of 100 ppbv - CO₄ = 4.6 I µm with minimum detection limit of 2 ppbv CH₄ and N₂O₄ = 7.28 µm <u>surroully in progress</u> with detection limits of 20 and 7 ppbv, respectively - New target analytes such as OCS, CH₂O, HONO, H₂O₂, C₂H₄, C₃H₈, and C₆H₆ - Monitoring of broadband absorbers acetone and UF6 - Compact, robust sensitive and selective single frequency, mid-infrared sensor technology is capable of performing precise and accurate concentration measurements of trace gases relevant in environmental, biomedical, industrial monitoring and national security # Merits of QEPAS based Trace Gas Detection - Very small sensing module and sample volume (a few mm³ to -2cm²) - Extremely low dissipative losses - Optical detector is not required - Wide dynamic range - Frequency and spatial selectivity of acoustic signals - Rugged transducer quartz monocrystal; can operate in a wide range of pressures and temperatures - Immune to environmental acoustic noise, sensitivity is limited by the fundamental thermal TF noise k_BT energy in the TF symmetric mode - Absence of low-frequency noise: SNR scales as $\sqrt{t_i}$ up to t=3 hours as experimentally verified #### QEPAS: some challenges - Cost of Spectrophone assembly - Sensitivity scales with laser power - Effect of H2O - Responsivity depends on the speed of sound and molecular energy transfer processes - Cross sensitivity is # Long Term Stability of QEPAS based Sensor for NO Concentration Measurements in Exhaled Breath #### **Future Directions and Outlook** - New target analytes such as OCS, CH₂O, HONO, H_2O_2 , C_2H_4 , C_3H_8 , and C_6H_6 - Ultra-compact, low cost, robust sensors (e.g. C_2H_6 , NO, CO.....) - · Monitoring of broadband absorbers: acetone, TATP acetone peroxide, UF₆ - · Optical power build-up cavity designs - Development of trace gas sensor networks