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From Conventional PAS to QEPAS
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Motivation for Nitric Oxide Detection

 Atmospheric Chemistry
» Environmental pollutant gas monitoring

» NO, monitoring from automobileexhaust and
power plantemissions

= Precursorof smog and acid rain
Industrial process control

* NO in medicine and biology
= Importantsignaling molecule in physiolegical
processes in humans and mammals (1998 Nobel
Prize in Physiolog/Medicine)
= Treatment of asthma, COPD, acute lungrejection

Photofragmentation of nitro-based explosives
(TNT)

Quartz Tuning Fork as a Resonant Microphone

Molecular Absorption Spectra within two Mid-IK
Atmospheric Windows

4 5mm nigue pr ies
« Extremely low internal losses
. - = Q~10000at 1 atm

= Q~100 000 in vacuum
= Acoustic quadrupole geometry
* Low sensitivity to external sound
« Large dynamic range (~10°) - linear from
thermal noise to breakdown deformation
* 300K noise x=10""" cm
) = Breakdown x~102cm
l + Wide temperature range: from 1 56K
’ (superfluid helium) to ~700K
+ Low cost (<$1)
Qther parameters
+ Resonant frequency -32 8 kHz
« Force constant ~26800 N/m
» Electromechanical coefficient =710 C/m

QEPAS Technique: QTF and Micro-resonator
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— {1 Micro-resonator (mR) tubes

» Must be close to QTF, but
must not touch the QTF (25-
50 um gaps).

Optimum inner diameter: 0.6
mm

Excitation

taser beam

+  Optimum micro-resonator

Quartz tuning tubes must be ~ 4.4 mm lon

fork electrodes (~M4<1<}/2 for sound at 32,
kHz)

Optical Absorpton - Maximum SNR of QTF with
Heating mR tubes: x30 (depending on
gas composition and pressure)

Thermal Expansion

Pressure Wave L,

Acoustic Detection RIEE




Merits of QEPAS based Trace Gas Detection

«  Very small sensing module and sample volume (a few mm” to ~2cm?)

= Extremely low dissipative losses

= Optical detector is not required

= Wide dynamic range

= Frequency and spatial selectivity of acoustic signals

» Rugged transducer — quartz monocrystal; can operate in a wide range of
pressures and temperatures

= Immune to environmental acoustic noise, sensitivity is limited by the
fundamental thermal TF noise 4,7 energy in the TF symmetric mode

 Absence of low-ﬁ-q?iuency noise: SNR scales as V1, up to /=3 hours as
expenmentally verified
QEPAS: some challenges
+ Cost of Spectrophone assembly
= Sensitivity scales with laser power
« Effect of H,0
* Responsivity depends on the speed of sound and molecular energy

transfer processes &
. sensitivity iss RICE

Performance of a 5.26 yum CW HHL TEC DFB-QCL

QCL based WMS QEPAS NO Gas Sensor

HHIL package {Maxior)

Control Electronics Unit
(CEU)

CW TEC DFB QCL based QEPAS Sensor Platform

Single frequency QCL radiatson recorded wath FTIR for CW DFB-QCL. optical power

different laser curreat values sta QCL temperatureof 20 5°C

IR camers unage of
(e Luser beam ot
$50mA 6nd 20 5 deg €

Emission spectra of a 1900cm™' TEC CW DFB QCL
and HITRAN Simulated spectra

Performance of 2012 CW DFB-QCL based NO
Sensor Platform

Wavelengh x|
[ ]
e | o
z &
g [T c®
§ -—rs‘;| rg
L == g
i = :
P .
@ Fontay o

Outputpower 117 mWia 25C
e ' RICE

[——10 1% NO &t P=200 Tor, Semdl cetl 10

e IO NG + 24% HO. Pe240 Tom
10 {—e 1pam NO » 2 8 D, Pe 240 Tar 3
3 8 T a e
] ] {
= 8 = 8
B’ w8 3 & |
o o = 1
@ » g- 4+
I | 5 § | i |
9 o f o Q o 2+
o £«
-2 o
Y Won o
O 4 1000 G

o e e T 1521 1550 1619 1648 1718
Laser current [mA)] Time [HH:MM]

2f QEPAS snignal (navy) and reference 3f signal (red) 2f QEPAS signal amphitude for | ppm NO
when laser was tuned across 19040.08 cm ' hne when laser was locked to the 1900.08 cm ' line

Mini d ble NO ration is:
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Long Term Stability of QEPAS based NO Sensor
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Dilution of a 1000 ppb NO Reference Concentration
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Preliminary Atmospheric Nitric Oxide Measurements
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Motivation for Sulfur Dioxide Detection

» Prominent air pollutant
« Annual SO, concentrations range from = 1 - 6 ppb

+ 8O, 1s emitted from coal fired power plants (~73%)
and other industnal facilities (~20%)

s B
+ In atmosphere, SO, converts to sulfuric acid and 1s a primary | S "‘
contnbutor to acid ran i

+ 8O, reacts to form sulfate aerosois
+ 80, exposure affects lungs and causes breathing difficulties
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Molecular Absorption Spectra witnitwo Mid-IR
Atmospheric Windows
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Performance of a 7.24 um CW HHL TEC DFB-QCL
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CW DFB-QCL optical power and current tuning
at three diffierent operating lemperatures
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SO, Line Selection for a 7.24 pm CW RT DFB-QCL
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Sumulated HITRAN absorption spectra of 11} ppm SO, and 14
water vapor (P=100 Tom, 7296 K. L=lcm).
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QEPAS spoctrum of 10 ppem SO, at P+100 Torr
for 7.24 um CW RT DFB-QCL operatingat 20 5°C
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2f Wavelength Modulation QEPAS Results for SO,
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20 QEPAS signal for dry SO, gas (red) and
moisturized with 2 4% H,0 (black) when laser was
tuned across 1380.9 cm * hne
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2f QEPAS signals for different SO,
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Minimum detectable SO, concentration is: Ve
~ 100 ppbv (103 1 s time resolution)
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QEPAS Performance for 17 Trace Gas Species (May 2012)
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For comparison: conventional PAS 2.3 (2.6)510 *cm 'WNH2 {1,800, 10390 1) for NH,e-(=+1

Summary and Outlook

s
RICE!

+ AS 26fpm and 7 24 ym CW TEC HHL packaged DFB-QCL based QEPAS
sensor for NO and SO, detection was demonstrated.

» For interference free NO absorption line located at 1900.08 cm ' a 1o mimmum
detection limit of 3 ppbv was achieved at a gas pressure of 240 Torr and
sampling time of 1 sec

» A lominimum detection limut of 100 ppby was achieved at a gas pressure of
100 Torr and sampling time of | sec for a SO, absorption line at 1380.94 cm .

After adding water vapor to analyzed SO, mixture more than 3 times
improvement in detected signal was observed

«  Laser spectroscopy with a mid-infrared, room temperature, continuous wave,
high performance DFB QCL is a promising analyuca approach for real time
atmospheric measurements and breath analyss

= Future tasks for the SO, will include line locking for long term measurements as
well as using a high power QCL (200 mW) operating at strongest SO,
absorption line at1348 cm'!

+ Compact, robust semsitive and selective QCL based QEPAS sensor technology
offers a promising future to perform real- | bi dical and
industrial emission measurements.
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Potential Integration of a CW DFB- QCL and
QEPAS Absorption Detection Module (ADM)

2012 QEPASADM

Appl Phys. Lett. 82, 3111110 (2008)

HHL package fiber coupled DFB-QCL
A. Lyskh, o1 al*1.6 W high wall plug eficiency  continuous -wave room tamperature quantsm cascade kasar smitting i 4.6 pm™




