

Photonic Technologies for Early Detection of Human Disease

- Target Trace Gases and Pathologies
- Motivation and Background for Physiological Monitors based on Expired Human Breath
- Ultra-Sensitive Gas Detection based Quantum Cascade Laser (QCL) Absorption
- · Examples of QCL-based Breath Measurements

LGR

Trace Reactive Gases As Physiological Messengers

- NO production is fied to numerous physiological processes in humans
 - vasorelaxation, inflammation, thrombosis, immunity
 - reduced NO production associated with atherosclerosis and ulcers
 - enhanced NO production associated with asthma, endotoxin shock, diabetes, and edema
- CO production is important in vascular muscle cell physiology and platelet aggregation
- Trace levels of these and other breath species are associated with numerous physiological pathologies
- Typical endogenous production rates are~ 10 pmol/min requiring trace gas detection levels in the range of 1to 10 ppbv.

Overall Project Goal To develop and demonstrate a prototype sensor for multi-gas analysis in exhaled human breath based on a Quantum-Cascade Laser Sensor with Cavity Enhanced Spectroscopy OCL 1 PO 2 PO 3 PO 3 PO 3 PO 3 PO 4 PO 4 PO 4 PO 5 PO 6 PO 6 PO 6 PO 7 PO 7 PO 8 PO 8 PO 8 PO 8 PO 8 PO 9 P

Multi-Gas QCL-Based Breath Analyzer

- Cavity-enhanced optical cells can provide ~100 m of optical pathlength in 2 cm of physical pathlength
- Each cell capable of ppb-level detection of trace breath radicals (NO, CO), organic biomarkers (pentane, ethane, formaldehyde, acetone, isoprene); and other breath species (ammonia, isotopic CO₂, etc.)
- Configurable array of stacked optical cells arranged along a common breath flow axis should permit rapid, non-invasive assay of basic biological functions with no consumables

Important Biomedical Target Gases

Malecule	Fermula	Truce Concentration in Brenth (ppb)	Biological/Pathology Indication
Nitric Oxide	NO	6 - 100	Inflammatory and immune responses (e.g., asthma) and vascular smooth muscle response
Carbon Monoxide	CO	400 - 3000	Smoking response, CO poisoning, vascular smooth muscle response, pintelet aggregation
Hydrogen Peraxide	H ₂ O ₂	1 - 5	Airway Inflammation, Oxidative stress
(artenyi sunde	cos	100-1000	Liver disease & acute rejection in lung transplant recipients
Formuldchy de	нсно	400 - 1500	Cancerous tumors, breast cancer
SI			

Summary and Future Directions

- Quantum Cascade Laser based Trace Gas Sensors
 - · Compact, tunable, and robust
 - High sensitivity (<10⁻⁴) and selectivity (3 to 300 MHz)
 - Fast data acquisition and analysis
 - Detected trace gases NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, C₂H₃OH and isotopic species
- Applications in Trace Gas Detection
 - Industrial process control and chemical analysis (NO)
 - Environmental monitoring (HCHO, CO₂)
 - Medical Diagnostics (NO, CO, COS, CO₂)
- Future Directions
- Cavity ring down and QE-PAS spectroscopy based applications
- Applications using thermoelectrically cooled, cw quantum cascade lasers and amplifiers
- Applications using near IR interband and far-IR intersub-band quantum cascade lasers

QC-DFB Laser: Pulsed vs. CW operation SPECIFIC DEVICE ISSUES ADVANTAGES Broad asymmetric linewidth Laser can be operated at near-room temperature (TE cooling) (>170 MHz FWHM) related to heating during excitation pulse Facilitates temperature control Reduced average power No consumables (liquid N2) Optimum frequency tuning . Unattended remote monitoring More sophisticated electronics · Decreased instrument size & for driving QC laser and data weight acquisition system are required

Key Characteristics of Mid-IR Quantum Cascade Lasers

- QC laser wavelengths cover entire mid-IR range from 3.5 to 24 µm determined by thickness of the quantum well and barrier layers of the active region
- Intrinsically high power lasers (determined by number of stages of injector-active quantum well gain regions)
 - CW:~100 mW @ 80°K, mWs @ 300 °K
 - Pulsed: 1 W peak at room temperature, ~50 mW avg.
 @ 0 °C (up to 80 % duty cycle)
- High Spectral purity (single frequency: \(\shrt{kHz} 330 \text{MHz}) \)
- Wavelength tunable by current (~1cm⁻¹) or temperature scanning (~10cm⁻¹)
- High reliability: long lifetime, robust operation and reproducible emission wavelengths

