

Tapered Hollow-Core Fibers Providing Single-mode Output in the 3.5 μm –7.8 μm Spectral Range

Marilena Giglio^a, Pietro Patimisco^{a,b}, Angelo Sampaolo^a, Paolo Pietro Calabrese^a, Jason M. Kriesel^c, Frank K. Tittel^b, and Vincenzo Spagnolo^{a,b}

^aPolySense Lab - Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari, Italy ^bDepartment of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA ^cOpto-Knowledge Systems, Inc. (OKSI), 19805 Hamilton Ave., Torrance, CA 90502-1341, USA

- Introduction
- **o** Theoretical model
- **o** Experimental results
- Conclusions

Introduction

Hollow-Core Waveguides

$$a(z) = \frac{a_{output} - a_{input}}{L} z + a_{input}$$

o Diffraction-limited collimated Gaussian beam

• Focal length:
$$f = \frac{R}{1 + \left(\frac{\lambda R}{\pi w^2}\right)^2}$$

• Waist radius at the focal plane:

$$w_0 = \frac{w}{\sqrt{1 + \left(\frac{\pi w^2}{\lambda R}\right)^2}}$$

$$G(r) = G_0 e^{-\frac{r^2}{w_0^2}}$$

• Beam intensity distribution:

$$J\left(u_{1m}\frac{r}{a_{input}}\right)$$

• **Power coupling efficiency:**

$$\eta_{1m} = \frac{\left|\int_{0}^{a_{input}} G(r) J\left(u_{1m} \frac{r}{a_{input}}\right) r dr\right|^{2}}{\int_{0}^{a_{input}} G(r) r dr \int_{0}^{a_{input}} J\left(u_{1m} \frac{r}{a_{input}}\right) r dr}$$

Propagation Losses

Depends both on *a_{input}* and *a_{output}*

w₀/a_{input} Parameter

Experimental Setup

Tapered HCW

Optical coupling with five lasers in the mid-IR spectral range

Beam profiles acquired at the lasers exit

Cage system

Powermeter/ Pyrocamera

Focal lengths providing the best coupling conditions

		7.8 μm QCL	6.2 μm QCL	5.2 μm QCL	4.6 µm QCL	3.5 μm ICL
<i>a</i> ₁	f	25 mm	50 mm	50 mm	75 mm	75 mm
	η ₁₁	89.6%	88.6%	94.0%	83.6%	93.8%
	w_0/a_1	0.52	0.82	0.69	0.91	0.70
<i>a</i> ₂	f	25 mm	50 mm	75 mm	75 mm	75 mm
	η_{11}	72.2%	94.6%	89.9%	93.6%	91.1%
	w_0/a_2	0.40	0.63	0.80	0.70	0.54

8

Beam Profiles at Tapered-HCW Exit

Single mode output when a₁ or a₂ as input bore radius

Example of 5.2 µm QCL coupled into input bore radius a₂

• F= 50 mm and F=75 mm allowing the same coupling efficiency of the laser power with the J_{11} mode

Although 90% coupling efficiencies, a w_0/a_2 value substantially lower than 0.64 does not guarantee a singlemode output

$$L_t(dB) = -10Log_{10} \frac{P_{out}}{P_{in}}$$

For each laser, lower losses when using the input side a_i giving the larger η_{11}

Discrepancy ascribed to

- **o** low spatial quality of the laser beams
- $\circ~$ at 3.5 $\mu m:$ scattering losses \propto 1/ λ^2 , caused by HCW inner surface roughness

- \circ Study on the influence of *f*, λ and *a* on Tapered-HCW performance
- Theoretical model predicting the best operating conditions for single-mode output and low optical losses
- **O Experimental validation of the model in the 3.5-7.8 μm spectral range**
- Selection of the coupling inner bore a_i allowing single-mode output with the lowest losses

	7.8 μm QCL	6.2 μm QCL	5.2 μm QCL	4.6 μm QCL	3.5 μm ICL
f	25 mm	50 mm	50 mm	75 mm	75 mm
2w	1.9 mm	2.3 mm	2.8 mm	3.5 mm	1.9 mm
А	a ₁	a ₂	a ₁	a ₂	a ₂
η ₁₁	89.6%	94.6%	94.0%	93.6%	91.1%
w _o /a	0.52	0.63	0.69	0.70	0.54
L _t (dB)	6- (imu) _A 4	8- (mm) x	7- (mm) ^ 6-	6 (mm) 5	7- (mm) A @
Beam Profile	3- 4 5 6 7 x (mm)	6	6 7 x (mm)	6 x (mm) 7	7 x (mm) 8