RICE Recent Advances in Infrared Semiconductor based Chemical sensing Technologies

F.K. Tittel, L. Dong, A.A. Kosterev, R. Lewicki and D.Thomazy Rice Quantum Institute, Rice University, Houston, TX, USA http://ece.rice.edu/lasersci/

- Motivation: Wide Range of Trace Gas Sensing
- Key Characteristics of QC Lasers: Oct. 2009
- Quartz enhanced Photoacoustic Spectroscopy
- Selected Applications of Trace Gas Detection
 - NH₃ Detection for Environmental and Medical Applications
 - Nitric Oxide detection
- Future Directions and Outlook
 - Development of Semiconductor Laser Arrays
 - Monitoring of broadband absorbers (Detection of UF₆)
 - Optical Power Built-up Cavity (OPBC) for QEPAS Sensor

OUTLINE

TERA-MIR 2009

> Turunc, Turkey

Nov 3-6, 2009

Work supported by NSF, NASA, DoE and the Robert Welch Foundation

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
 - Automobile, Truck, Aircraft and Marine Emissions
- Rural Emission Measurements
 - Agriculture & Forestry, Livestock
- Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Applications in Health and the Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Existing Methods for Trace Gas Detection

Basics of Optical Trace Gas Analyzers

Beer-Lambert's Law of Linear Absorption

$$I(v)=I_0 e^{-\alpha(v) P_a L}$$

 $\alpha(v)$ - absorption coefficient [cm⁻¹ atm⁻¹]; L – path length [cm]

ν - frequency [cm⁻¹]; P_a- partial pressure [atm]

$$\alpha(v) = C \cdot S(T) \cdot g(v - v_0)$$

C - total number of molecules of absorbing gas/atm/cm³ [molecule·cm⁻³ ·atm¹]

S – molecular line intensity [cm·molecule⁻¹] $g(v-v_0) - \text{normalized spectral lineshape function [cm],}$ (Gaussian, Lorentzian, Voigt)

Key Requirements: Sensitivity, specificity, rapid data acquisition and multi-species detection

Optimum Molecular Absorbing Transition

- NIR Overtone or Combination Bands
- MIR Fundamental Absorption Bands

Long Optical Pathlengths

- Multipass Absorption Cell White, Herriott)
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retroreflector); Standoff and Remote Detection
- Fiberoptic evanescent wave Spectroscopy

Spectroscopic Detection Schemes

- Wavelength or Frequency Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy (PAS or QEPAS
- Laser Induced Breakdown Spectroscopy

Molecular Absorption Spectra within the two Mid-IR Atmospheric Windows

1100

Wavenumber (cm⁻¹)

1200

1300

7.6 µm

Source: HITRAN 2000 database

900

1000

800

12.5 µm

1e-21

Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE
Sensitivity (% to ppt)	Optimum Wavelength, Power
Selectivity (Spectral Resolution)	Single Mode Operation and Narrow Linewidth
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Tunable Wavelength
Directionality or Cavity Mode Matching	Beam Quality
Rapid Data Acquisition	Fast Time Response
Room Temperature Operation	No Consumables
Field deployable	Compact & Robust

Key Characteristics of mid-IR QCLs and ICL Sources-2009

- Band structure engineered devices
 - (Emission wavelength is determined by layer thickness MBE or MOCVD); mid-infrared QCLs operate from 3 to 24 µm (AlInAs/GaInAs)
- Compact, reliable, stable, long lifetime, and commercial availability
- Fabry-Perot (FP), single mode (DFB) and multi-wavelength
- Broad spectral tuning range in the mid-IR

(4-24 μm for QCLs and 3-5 μm for ICLs and GaSb diodes)

- 1.5 cm⁻¹ using injection current control for DFB devices
- 10-20 cm⁻¹ using temperature control for DFB devices
- > 430 cm⁻¹ using an external grating element and FP chips with heterogeneous cascade active region design; also QCL DFB r array
- Narrow spectral linewidth
 - CW: 0.1 3 MHz & <10Khz with frequency stabilization (0.0004 cm⁻¹)
 - Pulsed: ~ 300 MHz
- High pulsed and cw powers of QCLs and ICLs at TEC/RT temperatures
 - Pulsed and CW powers of ~ 1.5 W; high temperature operation ~300K
 - >50 mW, TEC CW DFB @ 5 and 10 μm
 - >600 mW (CW FP) @ RT; wall plug efficiency of ~15 % at 4.6μm;

Quantum Cascade (QC), Interband (IC) and GaSb Laser Availability in Oct. 2009

Commercial Sources

- Adtech, CA
- Alpes Lasers, Switzerland & Germany
- Alcatel-Thales, France
- Corning, NY
- Hamamatsu, Japan
- Physical Sciences, Inc (Maxion Technologies, Inc),
- Nanoplus, Wuerzburg, Germany

Research Groups

- Harvard University
- Fraunhofer-IAF, Freiburg, Germany
- NASA-JPL, Pasadena, CA
- Naval Research Laboratories, Washington, DC
- Northwestern University, Evanston, IL
- Princeton University (MIRTHE), NJ
- Sheffield, UK
- State University of New York
- Technical University, Zuerich, CH
- •University of Montpelier, France

Quartz Enhanced Photoacoustic Spectroscopy

Quartz Tuning Fork as a Resonant Microphone

Unique properties

- Extremely low internal losses:
 - Q~10 000 at 1 atm
 - Q~100 000 in vacuum
- Acoustic quadrupole geometry
 - Low sensitivity to external sound
- Large dynamic range linear from thermal noise to breakdown deformation
 - 300K noise: $x \sim 10^{-11}$ cm
 - Breakdown: $x \sim 10^{-2}$ cm
- Wide temperature range: from 1.56K (superfluid helium) to ~700K
- Low cost (<\$1)

Other parameters

- Resonant frequency ~32.8 kHz
- Force constant ~26800 N/m
- Electromechanical coefficient ~7×10⁻⁶ C/m

QEPAS spectraphone

Microresonator tubes

- Must be close to the QTF but not touching it (30-50 mm gaps).
- Inner diameter 0.41 mm; 10% lower signal with 0.6 mm diameter tubes.
- Each piece ~5mm long (~l/2 for sound at 32.8 kHz)

Gain: ×10 to ×20

Windows

- Must be tilted to prevent the reflected light from going back into the microresonator.
- Exact positioning is not important, to the best of our current knowledge.

Comparative Sizes of QEPAS & PAS ADMs

Resonant photoacoustic cell (1000 Hz): $l\sim60$ cm, $V\sim50$ cm³

QEPAS spectraphone: $l\sim1$ cm, $V\sim0.05$ cm³

Alignment-free QEPAS Absorption Detection Module

Recent Applications of QCL based Trace Gas Sensors

Motivation for NH₃ Detection

- Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver diseases)

Important Biomedical Target Gases in Exhaled Human Breath

Molecule	Formula	Biological/Pathology Indication	
Pentane	CH ₃ (CH ₂) ₃ CH ₃	Lipid peroxidation, oxidative stress associated with inflammatory diseases, immune responses, transpla rejection, breast and lung cancer	
Ethane	C ₂ H ₆	Lipid peroxidation and oxidative stress	
Carbon Dioxide isotope ratio	¹³ CO ₂ / ¹² CO ₂	Marker for Helicobacter pylori infection, Gastrointestinal and hepatic function	
Carbonyl Sulfide	cos	Liver disease & acute rejection in lung transplant recipients (10-500 ppb)	
Carbon disulfide	CS ₂	Schizophrenia	
<u>Ammonia</u>	NH ₃	Hepatic encephalopathy, liver and renal diseases, fasting response	
Formaldehyde	НСНО	Cancerous tumors, breast cancer (400-1500 ppb)	
Nitric Oxide	NO	Inflammatory and immune responses (e.g., asthma) and vascular smooth muscle response (6-100 ppb)	
Hydrogen Peroxide	H ₂ O ₂	Airway Inflammation, Oxidative stress (1-5 ppb)	
Carbon Monoxide	СО	Smoking response, CO poisoning, vascular smooth muscle response, platelet aggregation (400-3000 ppb	
Ethylene	H ₂ C=CH ₂	Oxidative stress, cancer	
Acetone	CH ₃ COCH ₃	Fasting response, diabetes mellitus response, ketosis	

Mid-IR QEPAS based NH₃ Gas Sensor Architecture

Daylight Solutions CW EC-QCL

Real-time Breath Monitor Interface

- Controlled flow
- Continuous control of mouth pressure
- Continuous monitoring of CO₂ concentration (capnograph) and its use in QEPAS data processing

T.Risby: 12:00 Sept.7 & Poster

Wavenumber dependance of CW RT DFB QCL output power

Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection
- Photofragmentation of nitro-based explosives (TNT)

Motivation for Nitric Oxide Detection

- Environmental pollutant
 - Product of fossil fuel combustion process (automobile and power plant emissions)
 - Precursor of smog and acid rain

EC-QCL Based Faraday Rotation Spectrometer

- EC-QCL Operating at 5.3μm NO Fundamental Band
- 44cm effective optical pathlength
- Rochon Polarizer Extinction Ratio <10⁻⁵
- Not sensitive to water interference
- Sensitivity Not Limited by Interference Fringes
- Gas Cell Volume (~ 250ml)
- Easy and Robust Optical Alignment
- Continuous NO Monitoring (Absorption Line Locking enabled with mode-hop free tuning using Zeeman Modulation at 3rd harmonic)

 $(3 \times 2 \text{ ft.})$

Faraday Rotation Spectroscopy of Nitric Oxide

Future Directions and Outlook of Chemical Trace Gas Sensing Technology

High power fiber-coupled QCL for NO detection

CW Operation at 16.5C, 450mA

- LASER SOURCE EC-QCL (Daylight Solutions, Inc)
 - Tuning range 5.13-5.67 μm
 - Maximum tuning Rate 38 nm/sec
 - Highest optical power: ~250 mW
 - TE cooling, RT operation

Fiber coupled QCL and QEPAS detection system

- High coupling efficiency of laser output to fiber
- ► Beam size matching to QEPAS after collimation
- Aspheric lenses for both coupling and re-collimating.
- ≥86% coupling efficiency

FIBER

Material: AsSe3,

- · 22 µm core diameter
- · Single mode operation
- FC-PC termination
- ·AR Coated.

Collaboration with: V. Spagnolo, Politecnico Bari and CNR-LIT³

Monitoring of Broadband Absorbers

- Freon 125 (C₂HF₅)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals, e.g. chemical warfare agents
- Acetone (CH₃COCH₃)
 - Recognized biomarker for diabetes
- TATP (Acetone Peroxide, $C_6H_{12}O_4$)
 - Highly Explosive
- Uranium Hexafluoride (UF₆)

UF₆ Mid-Infrared Absorption Bands

Absorption spectrum of gas mixture under investigation and observed spectral features identification.

Assignment	v, cm ⁻¹	σ, cm ⁻¹ /atm
2v ₃ +v ₆	1386±2	0.0018
V ₁ +V ₂ +V ₆	1341	0.0088
V ₁ +V ₃	1290.9±0.5	0.72
2v ₂ +v ₆	1211±2	0.0007
V ₂ +V ₃	1156.9±0.5	0.82
v ₃ +2v ₆	905±2	0.0035
V ₁ +V ₄	852.8±0.5	0.12
V ₃ +V ₅	821	0.33
V ₃	625	350

R.S. McDowell, L.B. Asprey, R.T. Paine, Vibrational spectrum and force field of uranium hexafluoride. -J. of Chemical Physics, Vol. 61, No. 9, 1974.

QEPAS MDAL comparison with CRDS, ICOS & TDLAS

Minimum Detectable Absorption Loss (MDAL) [cm⁻¹/ $\sqrt{\text{Hz}}$] can be used for comparison of different techniques:

```
• Cavity Ring Down Spectroscopy (CRDS): ~3×10<sup>-11</sup>
```

- Integrated Output Spectroscopy (ICOS): $\sim 3 \times 10^{-11}$
- Multipass Gas Cell based TDLAS: ~ 2.×10⁻¹¹

```
• QEPAS (Sept 2009) MDAL (DFB 100mW): 1.9×10-8
```

- QEPAS-OPBC MDAL (DFB 20 mW): 3.2×10⁻¹⁰
- QEPAS-OPBC + μ resonator (estimated): $\sim 7 \times 10^{-12}$

QEPAS-OPBC can be as sensitive as CRDS, ICOS and TDLAS as well as retain most of the merits of QEPAS

DFB QCL array performance

Emission spectrum of a DFB-QCL array Pulsed operation (80kHz, 50ns) at room temperature Grating coupling strength, |κL|≈10

Temperature tuning by DC current

Ultra-compact Diode Laser based Trace Gas Sensor

Summary & Future Directions of Laser based Gas Sensor Technology

Semiconductor Laser based Trace Gas Sensors

- Compact, tunable, and robust
- High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)
- Capable of fast data acquisition and analysis
- Detected 14 trace gases to date: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, H₂S, H₂CO, SO₂, C₂H₅OH, C₂HF₅ TATP and several isotopic species of C, O, N and H.

New Applications of Trace Gas Detection

- Environmental Monitoring (urban quality NH3, H₂CO, NO, isotopic ratio measurements of CO₂ and CH₄, fire and post fire detection; quantification of engine exhausts)
- Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S)
- Medical & biomedical non-invasive diagnostics (NH₃, NO, N₂O and CH₃COCH₃)
- Ultra-compact, low cost, robust sensors (CO and CO₂)

Future Directions and Collaborations

- Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable near and mid-IR intersubband and interband quantum cascade lasers
- Further development of spectraphone technology
- New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e sensitive concentration measurements of broadband absorbers, in particular HCs, UF₆ and multi-species detection)
- Development of optically gas sensor networks based on QEPAS and LAS

Merits of QEPAS based Trace Gas Detection

- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Low sensitivity to environmental acoustic noise
- Significant reduction of sample volume (< 1 mm³)
- Applicable over a wide range of pressures
- Rugged transducer-quartz monocrystal, which can operate in a wide range of pressures and temperatures and is humidity insensitive
- Ultra-compact, rugged and low cost detection module (compared to other laser based sensor architectures)

QEPAS Performance for 13 Trace Gas Species (Sept. '09)

Molecule (Host)	Frequency, cm ⁻¹	Pressure, Torr	NNEA, cm ⁻¹ W/Hz ^{1/2}	Power, mW	NEC (τ=1s), ppmv
H ₂ O (N ₂)**	7306.75	60	1.9×10 ⁻⁹	9.5	0.09
HCN (air: 50% RH)*	6539.11	60	< 4.3×10 ⁻⁹	50	0.16
C ₂ H ₂ (N ₂)*	6523.88	720	4.1×10 ⁻⁹	57	0.03
NH ₃ (N ₂)*	6528.76	575	3.1×10 ⁻⁹	60	0.06
C ₂ H ₄ (N ₂)*	6177.07	715	5.4×10 ⁻⁹	15	1.7
CH ₄ (N ₂ +1.2% H ₂ O)*	6057.09	760	3.7×10 ⁻⁹	16	0.24
CO ₂ (breath ~100% RH)	6361.25	150	8.2×10 ⁻⁹	45	40
H ₂ S (N ₂)*	6357.63	780	5.6×10 ⁻⁹	45	5
CO ₂ (N ₂ +1.5% H2O) *	4991.26	50	1.4×10 ⁻⁸	4.4	18
CH ₂ O (N ₂ :75% RH)*	2804.90	75	8.7×10 ⁻⁹	7.2	0.12
CO (N ₂)	2196.66	50	5.3×10 ⁻⁷	13	0.5
CO (propylene)	2196.66	50	7.4×10 ⁻⁸	6.5	0.14
N ₂ O (air+5%SF ₆)	2195.63	50	1.5×10 ⁻⁸	19	0.007
$C_2H_5OH (N_2)^{**}$	1934.2	770	2.2×10 ⁻⁷	10	90
C ₂ HF ₅ (N ₂)***	1208.62	770	7.8×10 ⁻⁹	6.6	0.009
NH ₃ (N ₂)*	1046.39	110	1.6×10 ⁻⁸	20	0.006

^{* -} Improved microresonator

NNEA - normalized noise equivalent absorption coefficient.

NEC – noise equivalent concentration for available laser power and τ =1s time constant, 18 dB/oct filter slope.

^{** -} Improved microresonator and double optical pass through ADM

^{*** -} With amplitude modulation and metal microresonator

5.3µm QCL based QEPAS Gas Sensor for NO detection

External Amplitude Modulation:

- •QTF is used as a mechanical chopper at $f=\sim 32kHz$
- •No chirp associated with the laser current modulation
- •High resolution mode-hop-free tuning is possible

High resolution EC-QCL based NO Spectrum

