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* Motivation: Wide Range of Trace Gas Sensing
* Key Characteristics of QC Lasers: Oct. 2009
- * Quartz enhanced Photoacoustic Spectroscopy

. ° Selected Applications of Trace Gas Detection

= NH; Detection for Environmental and Medical Applications
* Nitric Oxide detection

e Future Directions and Outlook

= Development of Semiconductor Laser Arrays
® Monitoring of broadband absorbers (Detection of UFy)
= Optical Power Built-up Cavity (OPBC) for QEPAS Sensor
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Wide Range of Trace Gas Sensing Applications

Urban and Industrial Emission Measurements
= Industrial Plants
= Combustion Sources and Processes (e.g. fire detection)
= Automobile, Truck, Aircraft and Marine Emissions

Rural Emission Measurements
= Agriculture & Forestry, Livestock

Environmental Monitoring
= Atmospheric Chemistry
= Volcanic Emissions

Chemical Analysis and Industrial Process Control

= Petrochemical, Semiconductor, Nuclear Safeguards,
Pharmaceutical, Metals Processmg, Food & everage Industries

Spacecraft and Planetary Surface Monitoring
= Crew Health Maintenance & Life Support
Applications in Health and the Life Sciences

Technologies for Law Enforcement and National Security B
Fundamental Science and Photochemistry &

RICE



Existing Methods for Trace Gas Detection

Mass Spectroscopy 4—»' Gas Chromatography

Non-Optical Chemical

Electro Chemical

Chemiluminescence

Black Body Sources Fourier Transform

Optical Gas Filter Correlation

- Microwave Spectroscopy
Coherent Sources
Laser Spectroscopy
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Basics of Optical Trace Gas Analyzers

Absorber |

I_
| Gas, Liquid or Solid |

< -
- L

Beer-Lambert’s Law of Linear Absorption

1(v)=1, e -a(v) P, L

o(v) - absorption coefficient [cm! atm™]; L -
path length [cm]
v - frequency [cm!]; P,- partial pressure [atm]

I(v)

a(v)
j\ \Y%

a(v) = C-S(T)  g(v - vy)

C - total number of molecules of absorbing gas/atm/cm?
[molecule-cm™ -atm!]

S — molecular line intensity [cm ‘molecule™']

g(v- vy) —normalized spectral lineshape function [cm],

(Gaussian, Lorentzian, Voigt)

Key Requirements: Sensitivity, specificity, rapid

data acquisition and multi-species detection

Optimum Molecular Absorbing Transition
" NIR Overtone or Combination Bands
. MIR Fundamental Absorption Bands

Long Optical Pathlengths

@ Multipass Absorption Cell White, Herriott)

. Cavity Enhanced, Cavity Ringdown &
Intracavity Spectroscopy

- Open Path Monitoring (with retro-
reflector); Standoff and Remote Detection

- Fiberoptic evanescent wave Spectroscopy

Spectroscopic Detection Schemes

. Wavelength or Frequency Modulation

. Balanced Detection

. Zero-air Subtraction

. Photoacoustic Spectroscopy (PAS or
QEPAS

=  Laser Induced Breakdown Spectroscopy



Molecular Absorption Spectra within the two Mid-IR
Atmospheric Windows
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Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS IR LASER SOURCE

Sensitivity (% to ppt) Optimum Wavelength, Power

Selectivity (Spectral Resolution) | Single Mode Operation and
Narrow Linewidth

Multi-gas Components, Multiple | Tunable Wavelength
Absorption Lines and Broadband

Absorbers

Directionality or Cavity Mode Beam Quality
Matching

Rapid Data Acquisition Fast Time Response
Room Temperature Operation No Consumables

Field deployable Compact & Robust




Key Characteristics of mid-IR QCLs and ICL Sources-2009

Band — structure engineered devices

(Emission wavelength is determined by layer thickness — MBE or MOCVD); 5\’,
mid-infrared QCLs operate from 3 to 24 um (AllnAs/GalnAs) '

Compact, reliable, stable, long lifetime, and commercial availability

Fabry-Perot (FP), single mode (DFB) and multi-wavelength

Broad spectral tuning range in the mid-IR

A
v

(4-24 pum for QCLs and 3-5 um for ICLs and GaSb diodes)
= 1.5cm’! using injection current control for DFB devices

= 10-20 cm’! usmg temperature control for DFB devices D. Hofstetter et al, Appl. Phys. Lets
vol. 75, p.665, 1999) ;—{:,:_&

= >430 cm! using an external grating element and FP chips with
heterogeneous cascade active region design; also QCL DFB r array

Narrow spectral linewidth L S - R
= CW:0.1-3MHz & <10Khz with frequency stabilization (0.0004 cm!)
=« Pulsed: ~ 300 MHz

High pulsed and cw powers of QCLs and ICLs at TEC/RT
temperatures

= Pulsed and CW powers of ~ 1.5 W; high temperature operation ~300K

= >50mW, TECCW DFB @ 5 and 10 um

= >600 mW (CW FP) @ RT; wall plug efficiency of ~15 % at 4.6um,;



Quantum Cascade (QC), Interband (IC) and GaSb
Laser Availability in Oct. 2009

» Commercial Sources
= Adtech, CA
= Alpes Lasers, Switzerland & Germany
= Alcatel-Thales, France
= Corning, NY
= Hamamatsu, Japan
= Physical Sciences, Inc (Maxion Technologies, Inc),

= Nanoplus, Wuerzburg, Germany

* Research Groups
= Harvard University
= Fraunhofer-1AF, Freiburg, Germany
= NASA-JPL, Pasadena, CA
= Naval Research Laboratories, Washington, DC
= Northwestern University, Evanston, IL
* Princeton University (MIRTHE), NJ
=Sheffield, UK
=State University of New York
*Technical University, Zuerich, CH
=University of Montpelier, France



Quartz Enhanced
Photoacoustic Spectroscopy



Quartz Tuning Fork as a Resonant Microphone

1.5mm

10

Unique properties
Extremely low internal losses:
= Q~10000 at 1 atm
= (Q~100 000 in vacuum
Acoustic quadrupole geometry
= Low sensitivity to external sound

Large dynamic range — linear from thermal
noise to breakdown deformation

= 300K noise: x~10! cm
= Breakdown: x~102 cm

Wide temperature range: from 1.56K
(superfluid helium) to ~700K

Low cost (<$1)

Other parameters

Resonant frequency ~32.8 kHz
Force constant ~26800 N/m

Electromechanical coefficient ~7x10¢ C/m

% RICE



11

Excitation
laser beam

QEPAS spectraphone

N Quartz tuning
fork electrodes

Microresonator tubes

Must be close to the QTF but not
touching it (30-50 mm gaps).

Inner diameter 0.41 mm; 10%
lower signal with 0.6 mm
diameter tubes.

Each piece ~5Smm long (~1/2 for
sound at 32.8 kHz)

Gain: x10 to x20

Windows

Must be tilted to prevent the
reflected light from going back
into the microresonator.

Exact positioning is not
important, to the best of our
current knowledge.

%' RICE



Comparative Sizes of QEPAS & PAS ADMs

Optical multipass cell (100 m):
[~70 cm, V~3000 cm?

Resonant photoacoustic cell (1000 Hz): QEPAS spectraphone:
[~60 cm, V~50 cm3 [~1 cm, V~0.05 cm?




Alignment-free QEPAS Absorption Detection Module
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Recent Applications of QCL based
Trace Gas Sensors



Motivation for NH; Detection

Monitoring of gas separation processes
Detection of ammonium-nitrate explosives
Spacecraft related gas monitoring

Monitoring NH; concentrations in the exhaust
stream of NO, removal systems based on selective
catalytic reduction (SCR) techniques

Semiconductor process monitoring & control
Monitoring of industrial refrigeration facilities
Pollutant gas monitoring

Atmospheric chemistry

Medical diagnostics (kidney & liver diseases)

%' RICE




Important Biomedical Target Gases in Exhaled Human Breath

Molecule Formula Biological/Pathology Indication

Pentane CH,(CH,),CH, Lipid peroxidation, oxidative stress associated with
inflammatory diseases, immune responses, transplant
rejection, breast and lung cancer

Ethane C,H; Lipid peroxidation and oxidative stress

Carbon Dioxide 3C0,/12CO, Marker for Helicobacter pylori infection,

isotope ratio Gastrointestinal and hepatic function

Carbonyl Sulfide COS Liver disease & acute rejection in lung transplant
recipients (10-500 ppb)

Carbon disulfide CS, Schizophrenia

Ammonia NH, Hepatic encephalopathy, liver and renal diseases,
fasting response

Formaldehyde HCHO Cancerous tumors, breast cancer (400-1500 ppb)

Nitric Oxide NO Inflammatory and immune responses (e.g., asthma)
and vascular smooth muscle response (6-100 ppb)

Hydrogen Peroxide H,0, Airway Inflammation, Oxidative stress (1-5 ppb)

Carbon Monoxide CcO Smoking response, CO poisoning, vascular smooth
muscle response, platelet aggregation (400-3000 ppb)

Ethylene H,C=CH, Oxidative stress, cancer

Acetone CH,COCH, Fasting response, diabetes mellitus response, ketosis




Mid-IR QEPAS based NH; Gas Sensor Architecture

Daylight Solutions CW EC-QCL

MAXION CW DFB QCL

QCL
controller

Gas
I In

L_-—_

Mid-IR QCL

Gas handling system

Controller

Pressure |__| Diaphragm 1

Piezo
Driver

|

i

Cell

DAQCard
6062E

Lock-In

—. 1
el ‘TQ"<C Mirror

IR

U

PC

Control Electronics Unit

2f
+ 1 T

Data collection
and processing

(CEU)

Noise—equivalent concentration (NEC) is
6 ppb for als time constant and 20mW
excitation power at 1046.4 cm! (110 Torr)

| detector

Reference Gas out

Power

meter .
Tessure sensor port

Gas in

G—— e

Quartz TF with

————— Microresonator

Optical windows, Two glass tubes

@10 mm

Electrical feedthrough

%;;\ . MIRTHE

T.Risby: 12:00 Sept.7 & Poster RICE e



Real-time Breath Monitor Interface

KIN-TEK
Stanldard GTS Generator Atmospheric N, Dry Air . ; : 09] gurar 1 I Human 1
e Alr Ammonia ] \ |

el S >084
A Sensor g08 | NH,+CO, NH,+CO,

' ©0.7

1. Critical orifice 2 0
= 2. Photoacoustic cell o)
NH3 Calibration Switching (pressure 110 Torr) 8_06 T
mixture from 4-way valve 3. Flow meter ()] ] 5% COZ 5% CO

KIN-TEK Switching ! 4, Up-stream presure ': 0.5 2

% 3-way valve I" '— "'1' controlller 8 ]

\3 0.4+ k
(73] |—
g 0.3

0 100 200 300 400 500 600
Time [s]

— Critical Orifice :
= 100 scem T

Special 2-way
. valve
Exhaust

Critical Orifice in place
of a needle valve

Exhaust

Diaphragm =
[ Pump i

 Controlled flow

 Continuous control of mouth pressure |
« Continuous monitoring of CO, concentration (capnograph) <<\\
and its use in QEPAS data processing

T.Risby: 12:00 Sept.7 & Poster RICE



Wavenumber dependance of CW RT DFB QCL output power
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Motivation for Nitric Oxide Detection

Atmospheric Chemistry

Environmental pollutant gas monitoring

* NO, monitoring from automobile exhaust and
power plant emissions

= Precursor of smog and acid rain
Industrial process control

* Formation of oxynitride gates in CMOS Devices
NO 1n medicine and biology

= Important signaling molecule in physiological
processes in humans and mammals (1998 Nobel
Prize in Physiology/Medicine)

* Treatment of asthma, COPD, acute lung rejection

Photofragmentation of nitro-based explosives
(TNT)



Motivation for Nitric Oxide Detection

* Environmental pollutant

= Product of fossil fuel combustion process
(automobile and power plant emissions)

= Precursor of smog and acid rain
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EC-QCL Based Faraday Rotation Spectrometer

EC-QCL Wedge | CaF2
__________ ZnSe Cell and Solenoid RP lens
I Mirror |
| > : IR
| detector
| A I Gas out
TEC
I QcL | CA M4 | Pressure
I : Controller Flow Vacuum Lock-In
:-g[ ! meter pump f
I Diffraction — | l NitricI.Oédde 7
| Grating R cylinaer . Function
I ll Audio Generator
s -~ Absorption SmRISY '
QC Laser Temperature < Cell ‘ X
Currer:: Source Controller PC D&%géfd

Function
Generator

Mirror

CaF:
lens

HO—

IR

detector

EC-QCL Operating at 5.3um — NO Fundamental Band
44cm effective optical pathlength
Rochon Polarizer Extinction Ratio <10

Not sensitive to water interference
Sensitivity Not Limited by Interference Fringes
Gas Cell Volume (~ 250ml)

Easy and Robust Optical Alignment

Continuous NO Monitoring (Absorption Line Locking enabled with
mode-hop free tuning using Zeeman Modulation at 3@ harmonic)

% 2N PRINCETON
@ UNI\-’ERS['!‘\‘



Faraday Rotation Spectroscopy of Nitric Oxide

1.2
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Future Directions and Outlook of
Chemical Trace Gas Sensing Technology



High power fiber-coupled QCL for NO detection

CW Operation at 16 5C, 450mA

Mode Hop Free Tuning Range

250

AT s

150

100

Power (mW)

50‘

0

" LASER SOURCE EC—QCL 1807 1817 1827 1837 1847 1857 1867 1877 1887 1897.
(Daylight Solutions, Inc) Wavenumber (cnm)
= Tuning range 5.13-5.67 um
= Maximum tuning Rate 38 nm/sec
= Highest optical power: ~250 mW
= TE cooling, RT operation

Collaboration with: V. Spagnolo
Politecnico Bari and CNR-LIT?



Fiber coupled QCL and QEPAS detection system

> High coupling efficiency of laser

output to fiber
»>Beam size matching to QEPAS after

collimation

»Aspheric lenses for both coupling

and re-collimating.
»>86% coupling efficiency

Beam
Waist

Fiber L 300um

output
W

—1 1 I - —— :1; _&_—‘__,._E’/.
. | L = | S—
Material: AsSe;, i {1 Wiero
- 22 tm core diameter imiting (]| e

- Single mode operation fperture |
» FC-PC termination i
*AR Coated. QEPAS

Collaboration with :V. Spagnolo, Politecnico Bari and CNR-LIT3




Monitoring of Broadband Absorbers

® Freon 125 (C,HF)
" Refrigerant (leak detection)

" Safe simulant for toxic chemicals, e.g. chemical
warfare agents

* Acetone (CH;COCH,)

" Recognized biomarker for diabetes

* TATP (Acetone Peroxide, C.H,,0,)
" Highly Explosive
* Uranium Hexafluoride (UF)

%' RICE



UF, Mid-Infrared Absorption Bands

Experiment
@ Ref. 2 )

's Impurity i

1 \

800 900 1000 1100 1200 1300 1400

Absorption spectrum of gas mixture
under investigation and observed
spectral features 1dentification.

A. Nadezhdinskii et al, GPI, Moscow, March 2008

Assignment o, cm '/atm

2vatvg 1386*2 00018
Vi+Votvg 1341 0.0088
Vi+Vs 1290.910.5 0.72
2V, 121142 0.0007

1
v, cm

Votvs 1156.9+£0.5 0.82

V3+2vg 905+2 0.0035

VitVy 852 8x0.5 012

Va+tVs 821 0.33
Vs 625 350

R.S. McDowell, L.B. Asprey, R.T.
Paine, Vibrational spectrum and
force field of uranium

hexafluoride. -J. of Chemical
Physics, Vol. 61, No. 9, 1974.

Also: G. Baldaccini et al., Nuovo Cimento 8, 203, 1986



QEPAS MDAL comparison with CRDS, ICOS & TDLAS

Minimum Detectable Absorption Loss (MDAL) [cm/\Hz]
can be used for comparison of different techniques:

* Cavity Ring Down Spectroscopy (CRDS): ~3x101!
* Integrated Output Spectroscopy (ICOS): ~3x10-1
» Multipass Gas Cell based TDLAS: ~2.x1011
« QEPAS (Sept 2009) MDAL (DFB 100mW):  1.9x10
« QEPAS-OPBC MDAL (DFB 20 mW): 3.2%10-10
* QEPAS-OPBC + uresonator (estimated): ~ 7%1012

QEPAS-OPBC can be as sensitive as CRDS, ICOS and TDLAS
as well as retain most of the merits of QEPAS

29 Alex Kachanov, Skymoon Research R & D
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o DFB QCL array performance o
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Emission spectrum of a DFB-QCL array
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Ultra-compact Diode Laser based Trace Gas Sensor

3 .I-:_. % '_

N _ﬁmszzooa 01:




Summary & Future Directions of Laser based Gas Sensor Technology

e Semiconductor Laser based Trace Gas Sensors

Compact, tunable, and robust
High sensitivity (<10-4) and selectivity (3 to 500 MHz)
Capable of fast data acquisition and analysis

Detected 14 trace gases to date: NH;, CH,, N,0, CO,, CO, NO, H,0, COS, C,H,, H,S,
H,CO, SO,, C,H;OH, C,HF, TATP and several isotopic species of C, O, N and H.

 New Applications of Trace Gas Detection

Environmental Monitoring (urban quality — NH3, H,CO, NO, isotopic ratio
measurements of CO, and CH,, fire and post fire detection; quantification of engine
exhausts)

Industrial process control and chemical analysis ( NO, NH,, H,O, and H,S)
Medical & biomedical non-invasive diagnostics (NH;, NO, N,O and CH,COCH,)
Ultra-compact, low cost, robust sensors (CO and CO,)

e  Future Directions and Collaborations

Improvements of the existing sensing technologies using novel, thermoelectrically
cooled, cw, high power, and broadly wavelength tunable near and mid-IR intersubband
and interband quantum cascade lasers

Further development of spectraphone technology

New applications enabled by novel broadly wavelength tunable quantum cascade
lasers based on heterogeneous EC-QCL (i.e sensitive concentration measurements of
broadband absorbers, in particular HCs, UF, and multi-species detection)

- TR
Development of optically gas sensor networks based on QEPAS and LAS RICE
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Merits of QEPAS based Trace Gas Detection

High sensitivity (ppm to ppb gas concentration levels)
and excellent dynamic range

Low sensitivity to environmental acoustic noise
Significant reduction of sample volume (< 1 mm?)
Applicable over a wide range of pressures

Rugged transducer-quartz monocrystal, which can
operate 1n a wide range of pressures and temperatures
and 1s humidity insensitive

Ultra-compact, rugged and low cost detection module
(compared to other laser based sensor architectures)

%'RICE



QEPAS Performance for 13 Trace Gas Species (Sept. ‘09)

Molecule (Host) Frequency, | Pressure, NNEA, Power, | NEC (t=1s),
cm’! Torr cm’ ' W/Hz" mW ppmyv
H,0 (Ny)** 7306.75 60 1.9x10” 9.5 0.09
HCN (air: 50% RH)* 6539.11 60 <4.3x10” 50 0.16
C,H; (Ny)* 6523.88 720 4.1x10” 57 0.03
NH; (Ny)* 6528.76 575 3.1x10” 60 0.06
C,H, (Ny)* 6177.07 715 5.4x10” 15 1.7
CH, (N;+1.2% H,0)* 6057.09 760 3.7x10” 16 0.24
CO, (breath ~100% RH) | 6361.25 150 8.2x10” 45 40
H,S (Np)* 6357.63 780 5.6x10” 45 5
CO, (N2+1.5% H20) * 4991.26 50 1.4x10° 4.4 18
CH,0 (N3:75% RH)* 2804.90 75 8.7x10” 7.2 0.12
CO (Ny) 2196.66 50 5.3x10” 13 0.5
CO (propylene) 2196.66 50 7.4x10™ 6.5 0.14
N,O (air+5%SF) 2195.63 50 1.5x10™ 19 0.007
C,Hs0H (N)** 1934.2 770 2.2x10°" 10 90
C,HF5 (Np)*** 1208.62 770 7.8x10” 6.6 0.009
NH; (Np)* 1046.39 110 1.6x10° 20 0.006

* - Improved microresonator
** _ Improved microresonator and double optical pass through ADM
**% _ With amplitude modulation and metal microresonator

NNEA - normalized noise equivalent absorption coefficient.
NEC — noise equivalent concentration for available laser power and t=1s time constant, 18 dB/oct filter slope.

&
For comparison: conventional PAS 2.2 (2.6)x10? cm'' W/Hz (1,800; 10,300 Hz) for NH,* (+%) %3 RICE

* M. E. Webber et al, Appl. Opt. 42, 2119-2126 (2003); ** J. S. Pilgrim et al, SAE Intl. ICES 2007-01-3152



5.3um QCL based QEPAS Gas Sensor for NO detection

Germanium
EC-QCL f Ié%ns
__________ ~50 m
I Mirror - ! Power
: ~ : meter
l TEC 14  casinff | Gasou
| QCL
| . (N || = irf=——=1 . L
| R \ % | (S | | Flow || External Amplitude Modulation:
Diffraction T meter - .
I Gratin -1 ' | [fiiessure | *QTF is used as a mechanical
L oraur g_ | N | I Controller I
: Vacuur | | chopper at f=~32kHz
pump . . .
e el | onperalure | | *No chirp associated with the laser
| l current modulation
; | |
Function a5 . - o1l . _ )
Generator [ %" |« : : ngh rgsoluthn mode-hop-free
| I tuning is possible
~L | Pure |
DAQCard Nitrogen : '
PC <:| et | Ntric Oxide |

Gas handling system
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High resolution EC-QCL based NO Spectrum
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