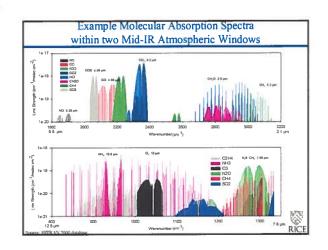
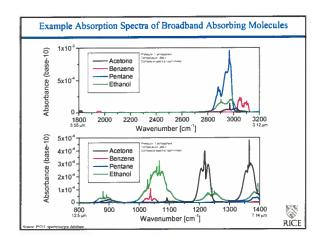
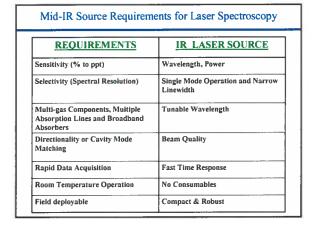
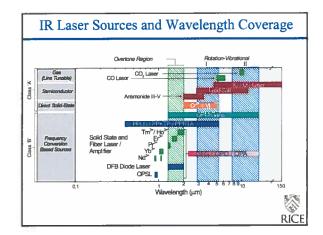
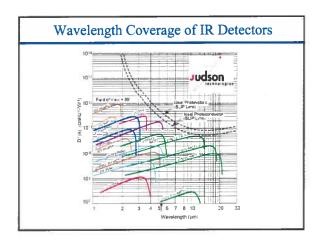

UDLA 2



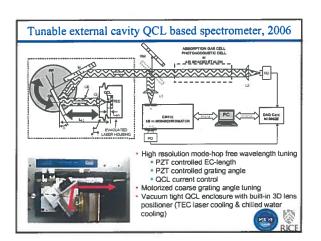


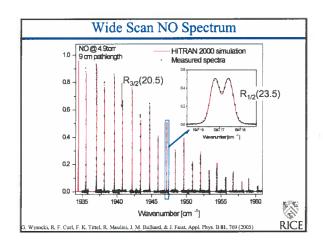


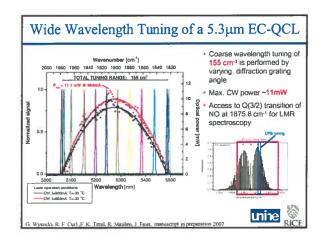


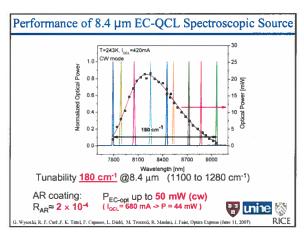


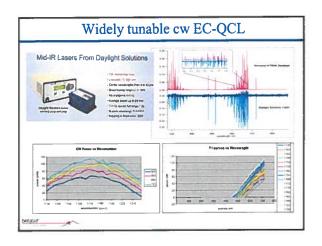
Key Characteristics of Mid-IR Quantum Cascade Lasers for Spectroscopy

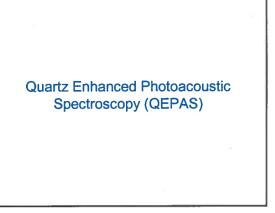

- Laser wavelengths cover the entire Mid-IR range from 3 to 24 μm
- High power (>500 mW cw, >5W peak for pulsed)
- High spectral purity single frequency with DFB structure or external cavity: < kHz to 33 MHz
 Continuous tuning by temperature (~10 cm⁻¹), current (~1 cm⁻¹) or external cavity (>200 cm⁻¹ → pulsed mode)
- · High reliability: low failure rate, long lifetime and robust
- Capable of room temperature operation
 - Pulsed: up to +150°C
 - CW: up to RT

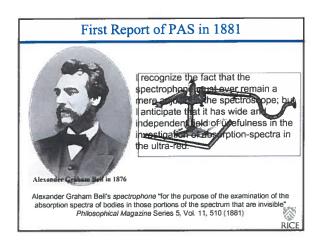

RICE

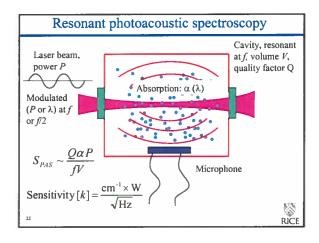

12

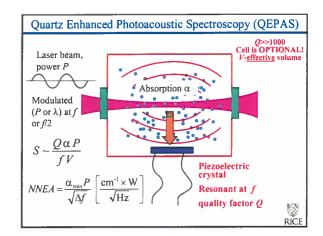


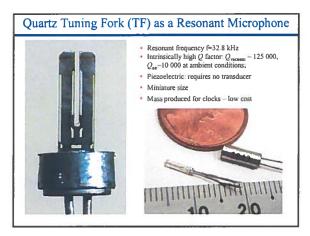

Widely Tunable, CW, TEC
Quantum Cascade Lasers

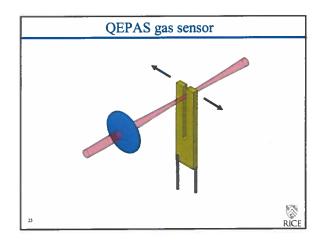


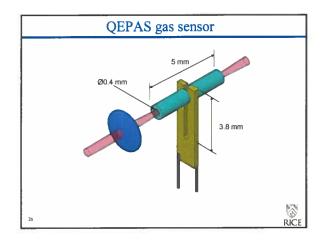


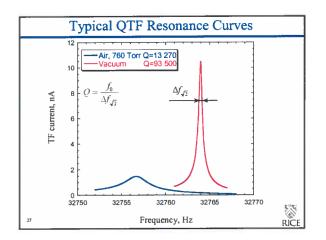


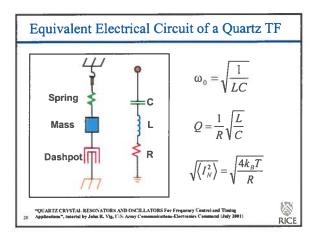


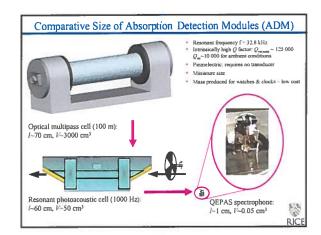


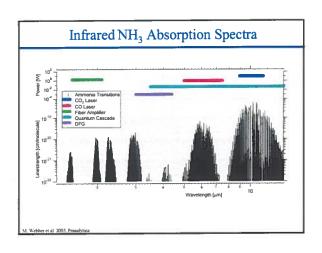


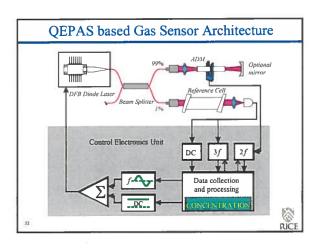


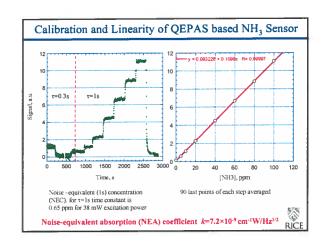




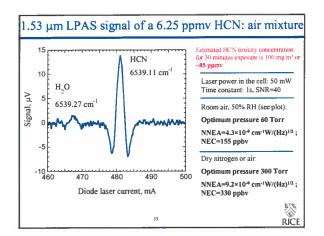





Merits of QE Laser-PAS based Trace Gas Detection


- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Immune to ambient and flow acoustic noise, laser noise and etalon effects
- Significant reduction of sample volume (< 1 mm³)
- Applicable over a wide range of pressures
- Temperature, pressure and humidity insensitive
- Rugged and low cost (compared to other optical sensor architectures)

20


5

Molecule (Host)	Frequency, em	Pressure, Torr	NNEA, cm ⁴ W/Hz ³	Power, mW	NEC (1-1a),
HO (NIII	7300.73	60	1.9×10*	9.5	0.09
HCN (sir: 50% RH)*	6539,11	60	< 4.3×10	50	0.16
Calla (Na)**	6329.17	75	-2.5=10°	- 40	0,06
NH ₂ (N ₂)*	6528.76	575	3.1=10*	60	0.06
CIL(N ₁)°	6057.09	950	2.9×10*	13.7	2.1
CO ₂ (breath ~100% REf)	6361.25	90	1.6*10*	26	410
H'R (N').	6357.63	780	5,6410	45	0.20
CO ₁ (N ₁ +1.5% H3O) *	4991.26	50	1.4×10 ⁻⁸	4.4	18
CH ₂ O (N ₂ :75% RH)*	2804.90	75	8.7×10	7.2	0.12
CO (N ₂)	2196.66	50	5.3×10°	13	0.5
CO (propylene)	2196.66	50	7.4×10*	6.5	0.14
N2O (air+5%SF ₆)	2195.63	50	1.5×10*	19	0.007
C ₃ H ₃ OH (N ₃)**	1934.2	770	2.2=10	10	90
C ₃ HF ₃ (N ₃)***	1208.62	770	7.8*10*	6.6	0.009
NH ₂ (N ₂)*	1046.39	110	7.8×10*	15	0.04
Improved microresonal Improved microresonal With amplitude modul NNEA – normalized noise e NEC – noise equivalent con	or and double of lation and meta equivalent abso	і тистоговою грани сосійс	etor iest.	ls time con	stant.

Sensor Areas Explored at Rice

- Methods employed
 - Extended pathlengths
 - Cavity ringdown
 - Integrated Off-Axis Spectroscopy
 - Wavelength Modulation
 - Pulse-to-pulse fluctuation removal by comparing the same pulse on the same or another detector
 - Tuning fork photoacoustic spectroscopy
- 16 gases detected: NH₃, CH₄, H₂S, N₂O, CO₂, CO, NO,C₂H₂ H₂O, OCS, C₂H₄, SO₂, C₂H₃OH, C₂HF₅, H₂CO, C₂H₆, HCN
- Practical applications
 - Crew Health Maintenance & Life Support H₂CO, NH₃
 - Radioactive site remediation
 - Medical breath analysis OCS, NO, CO₂, acetone
 - Industry catalyst poison CO
 - Urban air smog H₂CO

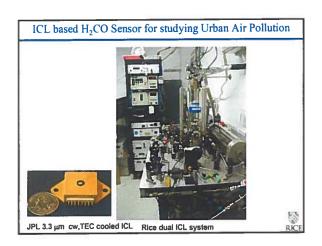
Motivation for Precision Monitoring of H₂CO

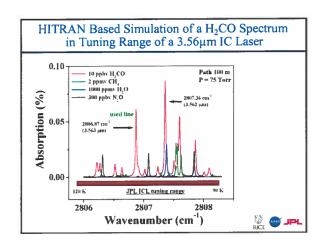
- Precursor to atmospheric O₃ production
- · Pollutant due to incomplete fuel combustion processes
- · Potential trace contaminant in industrial manufactured products
- Medically important gas

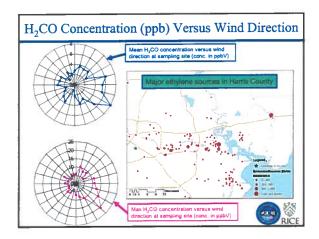
Trace Gas Sensing Examples

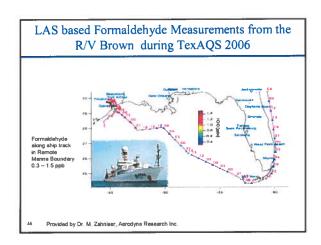
Houston Ozone Chemistry

- · Rapid oxidation of highly reactive VOCs leads to ozone formation in urban areas
- · As a major petrochemical center, the Houston region produces ~30 billion pounds of ethylene annually


TexAQS II Field Campaign Summer 2006


- To study ozone formation and transport, a coordinated field study was conducted during August to September 2006 in the Greater Houston area
- 5 aircraft, one ship, two ground chemistry sites, -20 periphery and meteorological sites were employed during TexAQS II
- Participation by ~300 scientists from academia, national laboratories, industry and government agencies




Moody Tower, UH Campus

Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- · Environmental pollutant gas monitoring
 - NO_N monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection

NO as a Biomarker

- NO is biochemically involved in most tissues and physiological processes in the human body
- NO excretion increases in exhaled breath in lung diseases such as :
 - ✓ Asthma¹
 - ✓ Chronic Obstructive Pulmonary Disease²
 - ✓ Acute lung rejection³
 - ✓ Acute respiratory distress syndrome⁴
 - ✓ Pneumonia (useful for intubated patients)⁵

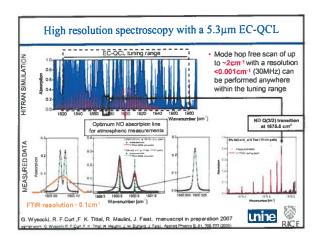
vong K. E. Westcherg, 2d Landberg, Interspeed mixtues of PSO in stabuled are of authernatics. Eur Paper J 1993; 6: 1964-1970.

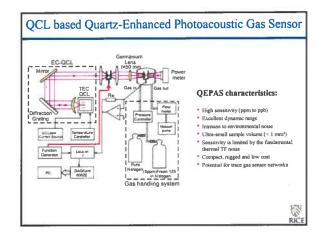
Beam M. S. Loukhner, S. Calpert, P. Softers, S. Kharzenov, Plannes Ethaled NOs (CPP) Am I Paper Crit Care Mad 1998, 137 pp 994-1102.

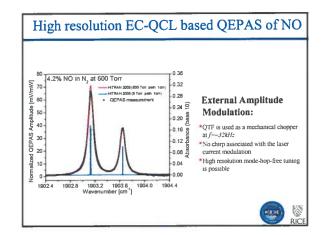
Bod Filt et al. Ethaled NO in human long transplantation. A nonsevour-warehow trawbar reportion. Am J Reper Crit Care Made 1998, 157:85.

CZ-1223

*Brett Sd, Events TW: Measurement of endogenous NO in the lungs of patients with the ARDS: Am J Rapir Crit Care Med 1998, 157 (3 Pt 1) 99;

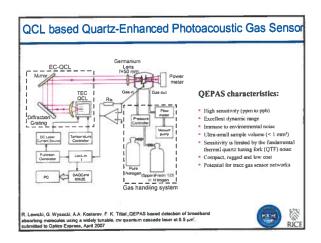

*Ashion Crit of Rehaland and most NO in a maker of measurement in controlled nations. Am J Rapir Crit Care Mart 2001; 16:1651:1143-9.

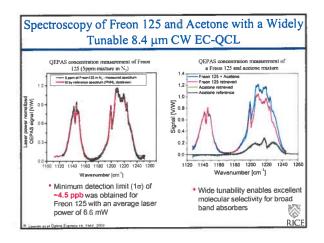

Why is Breath so Useful?

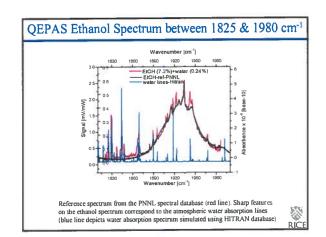

- Breath can be analyzed non-invasively from spontaneously breathing human subjects (neonate to the elderly), laboratory animals (from mice to horses), or from intubated patients (in ORs or ICUs).
- Breath can be sampled in the clinic, the home, the field, at the patient bedside, or in the physician's office by nurses, technicians, physicians and by the patient themselves.
- Breath analysis can be used for nutritional studies, exercise studies, to detect disease, stage disease, to monitor therapy or to monitor treatment

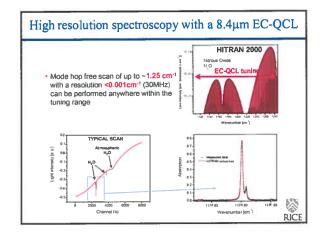
Turence Rieby, Johns Hopkins University

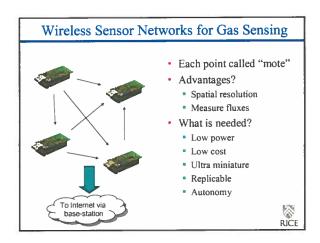
A	ac 400 diff	erent molecules in breath;	
		ned biochemical pathways	
many wit	ii weli ueili	neu piochemicai patriways	
Compound	Concentration	Physiological basis/Pathology Indication	
Acetaldehyde	ppb	Ethanol metabolism	
Acatonia .	ppm	Decarboxylation of acetoacetate, diabetes	
Ammonia	ppb	protein metabolism, liver and renal diseas-	
Carbon dioxide	96	Product of respiration, Heliobacter pylori	
Carbon disulfide	ppb	Gut bacteria, schizophrenia	
Carbon monoxide	ppm	Production catalyzed by heme oxygenase	
Carbonyi sulfide	ppb	Gut bacteria, liver disease	
Ethane	ppb	Lipid peroxidation and oxidative stress	
100 80 miles	ppb	Gut bacteria	
Ethylene	ppb	Lipid peroxidation, oxidative stress, cancer	
Hydrocarbons	ppb	Lipid peroxidation/metabolism	
Hydrogen	ppm	Gut bacteria	
Isoprene	ppb	Cholesterol biosynthesis	
Methana	ppm	Gut bacteria	
Methanethiol	ppb	Methionine metabolism	
Methanol	ppb	Metabolism of fruit	
Methylamine	ppb	Protein metabolism	
Nitric oxide	ppb	Production catalyzed by nitric oxide synthas	
Dxygen	96	Required for normal respiration	
Pentane	ppb	Lipid peroxidation, oxidative stress	
Water	1960	Product of respiration	

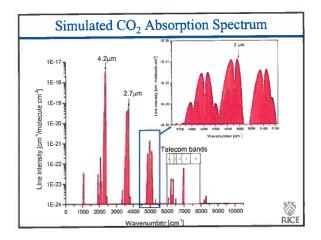


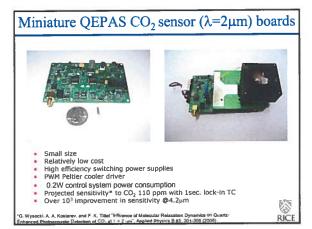



Monitoring of two broadband absorbers

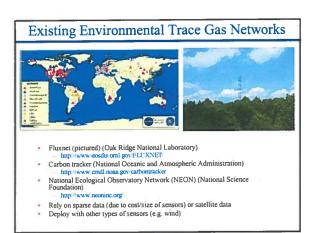

- Freon 125 (C₂HF₅)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals e.g. chemical warfare agents
- Acetone (CH₃COCH₃)
 - Recognized biomarker for diabetes







Future of Chemical Trace Gas Sensing



new design

Future Directions of Mid-IR Sensor Technology

- Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR interband and intersubband quantum cascade
- New applications enabled by novel broadly wavelength tunable quantum cascade lasers (especially sensitive concentration measurements of broadband absorbers, in particular VOCs and
- Development of optically multiplexed gas sensor networks based on QEPAS

New Applications of Trace Gas Detection

- · Distributed sensor networks for environmental monitoring (NH3, CO, CH4, C_2H_4 , N_2O , CO_2 and H_2CO)
- · Inexpensive and sensitive sensors for industrial process control and chemical analysis (HCN, NO, NH₃, H₂O)
- Wearable sensors for medical & biomedical diagnostics (NO, CO, COS, CO₂, NH₃, C_2H_4
- · Hand-held sensors and sensor network technologies for law enforcement

Summary and Future Directions

- Near and Mid-Infrared Semiconductor Laser based Trace Gas Sensors
 - Compact, robust sensor technology based on multipass cell absorption, cavity enhanced and quartz enhanced photoacoustic spectroscopy (QEPAS)
 High sensitivity (<10-4) and selectivity (3 to 500 MHz)

 - Past data acquisition and analysis
 Detected 13 trace gases to date: NH₂, CH₃, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, SO₂, C₂H₃OH, C₂HF₃ and isotopic species of C, O, N and H.
- New Applications of Trace Gas Detection
 - Distributed sensor networks for environmental monitoring (NH $_{\rm H}$ CO, CH $_{\rm e}$ C $_{\rm 2}$ H, N $_{\rm 2}$ O, CO $_{\rm 2}$ and H CO)
 - and rigid)

 Inexpensive and sensitive sensors for industrial process control and chemical analysis (HCN, NO, NH, H2O)

 Sensors for medical & biomedical diagnostics (NO, CO, COS, CO₂, NH₁, C₂H₄)
- **Future Directions and Collaborations**
 - Further improvements of the existing sensor technologies using novel, thermoelectrically cooled, ew. high power mid-IR interband and intersubband quantum cascade lasers and QEPAS
 - New applications enabled by novel widely tunable quantum cascade lasers (especially sensitive concentration measurements of broadband absorbers, in particular VOCs and HCs)
 - Development of optically multiplexed gas sensor networks based on QEPAS

