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Quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor technology is based on a new approach to
photoacoustic detection which employs a quartz tuning fork (TF) as a resonant acoustic transducer [1,2]. A
QEPAS sensor detects the weak acoustic pressure wave that is generated when optical radiation interacts
with a trace gas. The weak pressure wave excites a resonant vibration of a TF which is then converted into an
electric signal by the piezoelectric effect. Subsequently, the electric signal, which is proportional to the
concentration of the gas, is measured by a transimpedance amplifier. Merits of QEPAS compared to
conventional resonant photoacoustic spectroscopy include QEPAS sensor immunity to environmental
acoustic noise, a simple absorption detection module design, and its capability to analyze trace gas samples
of ~1 mm® in volume.

This poster reports recent improvements of spectraphone design and QEPAS based sensor performance
In order to enhance the amplitude of the photoacoustic signal, it is advantageous to place a TF within a
microcresonator composed of two thin tubes, so that the microresonator yields a signal gain from 10 to 20.
To-date, we have investigated the sensor performance with /=4mm, 4.4mm and 5Smm long metal tubes with
ID=0.4 mm, 0.5 mm, 0.58 mm, 0.6 mm, 0.76 mm and 0.084 mm. A near-infrared fiber-coupled distributed
feedback (DFB) diode laser (JDS Uniphase model CQF935/908-19600) was used as the QEPAS excitation
source. The diode laser output was split into a 1:99 ratio by means of a fiber beam splitter (ThorLabs
10202A-99-APC). A small fraction of the laser light was sent to a commercial fiber-coupled reference gas
module (Wavelength References, Mulino, OR) containing a sealed cell filled with a mixture of 5 Torr C;H»
and 145 Torr N2, a fiber collimator, and a photodiode. The remaining laser power was directed to a
spectrophone consisting of the TF and two tubes forming the acoustic microresonator. The spectrophone was
placed into a vacuum-tight enclosure (the inner gas volume is V' ~1 cm’® when the spectrophone is instalied)
equipped with two sapphire windows and gas inlet and outlet. C;H, in N, (10 ppmv) was used as a
convenient target gas whose flow was set to 100 ccm. A control electronics unit was employed to measure
the f7r and Q-factor of the TF, to modulate the laser current at fi = 1/2 f, to lock the laser wavelength to the
targeted absorption line and to measure the current generated by the TF in response to the photoacoustic
signal. For a specific length tube configuration, we varied the gas pressures by means of a pressure controller
(MKS Type 649) to obtain signal amplitudes for different gas pressures.

The sensor performance was evaluated based on the SNR with a calibrated C;H; gas mixture. In Ref. [3]
it was shown that the TF noise is inversely proportional to the square root of the equivalent resistor R of the
TF. Therefore, the SNR is proportional to the product of signal amplitude and VR of the TF. The optimal
microresonator parameters are /=4.4mm and ID=0.5mm, with the two gaps between TF and the
microresonator tubes set to between 30um and 50pm.
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Introduction
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#A microcresonator composed of two thin tubes can be applied to enhance the amplitude of a QEPAS signal.

#Two 4.4mm-long tubes yield the highest SNR. Deviation from the half wavelength of a sound wave, 5.18 mm, is primarily due to interactions between the two tubes and with the QTF.
ffici ity to i acoustic noise, a 0.5 mm ID was selected as

# Although 2 0.6 mm ID tube has a higher SNR at >300 Torr pressure, the corresponding Q of the system s lowest. To ensure
the optimum inner diameter for practical design.
#Distance between the resonator tube end and the QTF surface also affects the SNR, smaller gap yielding higher SNR.,
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