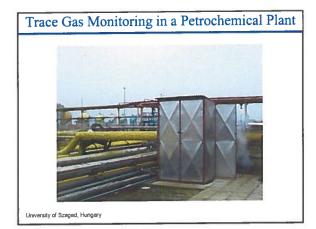
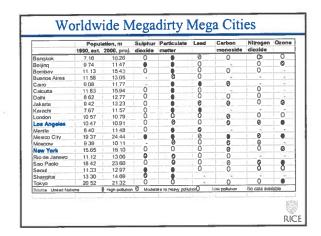


Recent Advances and Applications of Semiconductor Laser based Gas Sensor Technology

F.K. Tittel, Yu. Bakhirkin, R.F. Curl, A.A. Kosterev, R. Lewicki, M. McCurdy, S.So and G. Wysocki

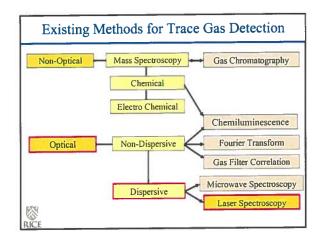
Rice Quantum Institute, Rice University, Houston, TX http://ece rice edu/lasersci/

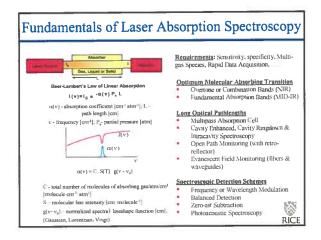

- Motivation: Wide Range of Chemical Sensing
- Fundamentals of Laser Absorption Spectroscopy
- Selected Applications of Trace Gas Detection
- LAS with a Multipass Absorption Cell (NH₁, H₂CO)
 Quartz Enhanced L-PAS (HCN, H₂CO)
- OA-ICOS NO based Sensor Technology (NO, H₂CO)
- Future Directions and Conclusions

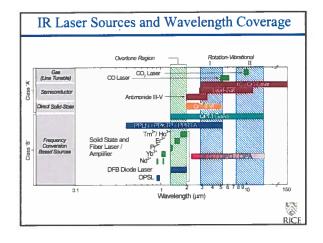

Work supported by NSF, NASA, DOE. DoD and Welch Foundation

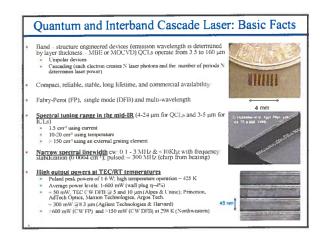
Wide Range of Trace Gas Sensing Applications

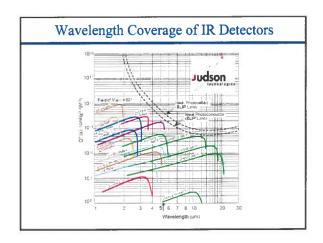
- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
- Automobile, Aircraft and Marine Emissions
- **Rural Emission Measurements**
 - · Agriculture & Forestry, Livestock
- **Environmental Monitoring**
 - Atmospheric Chemistry
- Volcanic Emissions
- · Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing & Food Industries
- Spacecraft and Planetary Surface Monitoring
 - · Crew Health Maintenance & Life Support
- Applications in Medicine and Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

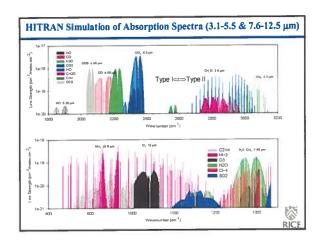




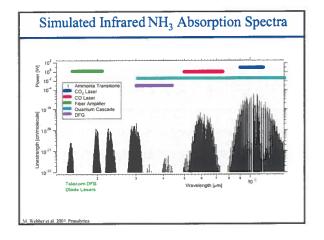


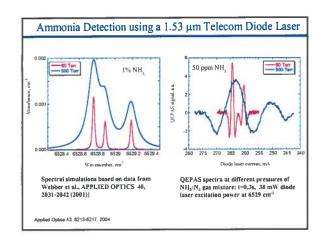


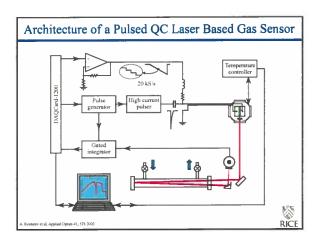




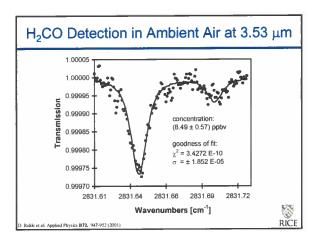
REQUIREMENTS	IR LASER SOURCE			
Sensitivity (% to ppt)	Power			
Selectivity	Single Mode Operation and Narrow Linewidth			
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Tunable Wavelengths			
Directionality or Cavity Mode Matching	Beam Quality			
Rapid Data Acquisition	Fast Time Response			
Room Temperature Operation	No Consumables			
Field deployable	Compact & Robust			

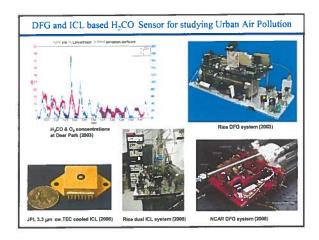


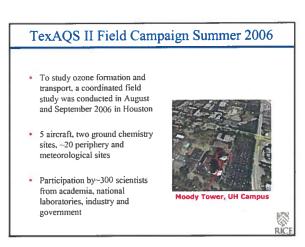

Species	cm ⁻¹	Precision 1 s RMS (ppt)	LOD 100 s (ppt)	
NH ₂	967	50	20	Limit of Detection
NO ₂	1600	80	40	(LOD) for S/N = 2
HONO	1700	200	80	Pathlength: 210 m
co	2190	120	50	Typical data acquisiti times: 1-100 s
N,O	2240	100	50	
HNO ₃	1720	200	80_	
0,	1050	500	200	
NO	1905	200	100	
CH,	1270	400	200	
SO ₂	1370	310	120	
C ₂ H ₄	C ₂ H ₄ 960 H ₂ CO 1765	360 350	140	
H ₂ CO			100	
H ₂ O ₂ 1267	1267	1000	400	

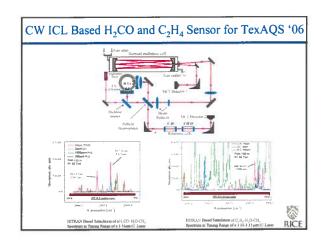

Motivation for NH₃ Detection

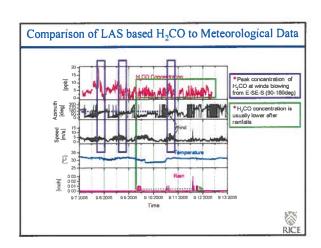
- Monitoring of gas separation processes
- · Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- · Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- · Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver dysfunctions)

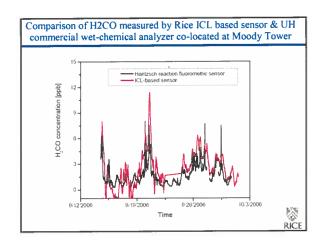


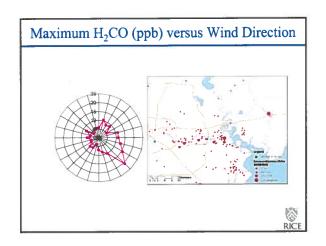


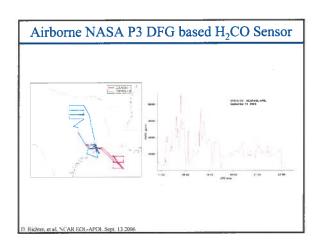

Motivation for Monitoring of H₂CO

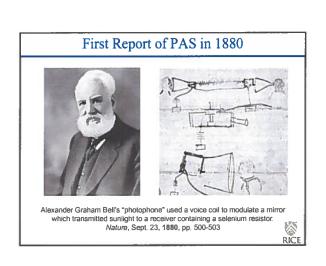

- Toxic pollutant due to incomplete fuel combustion processes
- <u>Potential trace contaminant in industrial</u> manufactured products (eg. resins, foam)
- Atmospheric H₂CO is a key hydrocarbon oxidation product which leads to the photochemical generation of ozone and release of hydrogen radicals
- · Medically important gas

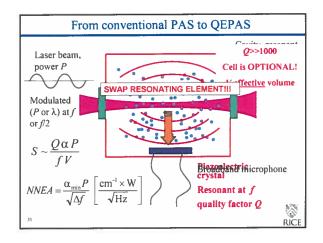


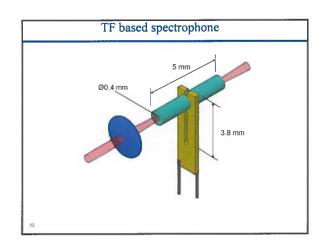


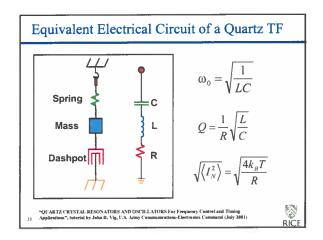


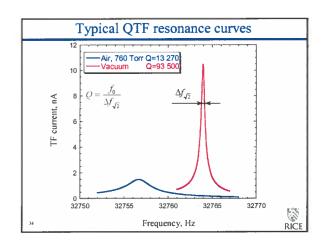


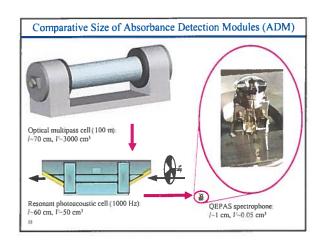


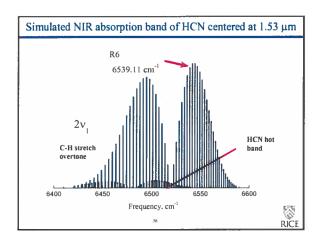


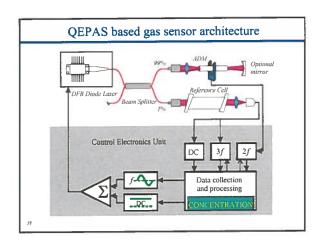


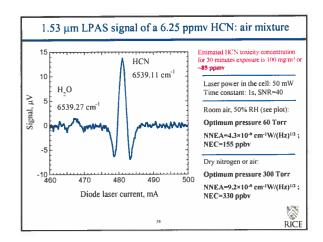


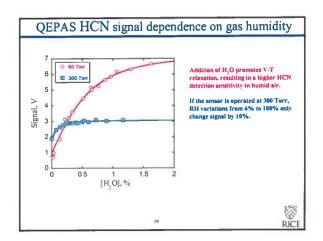

Photoacoustic Spectroscopy

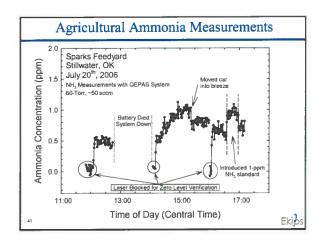


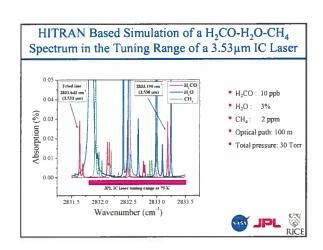


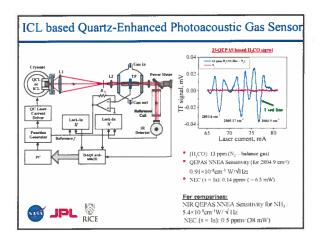


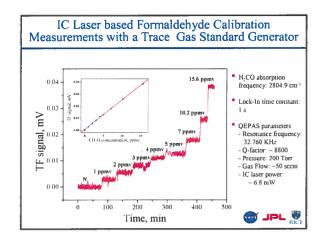


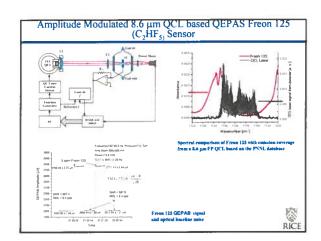


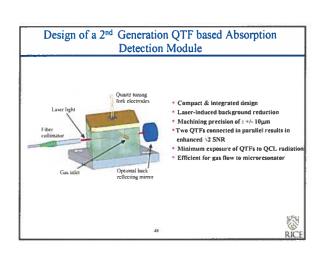








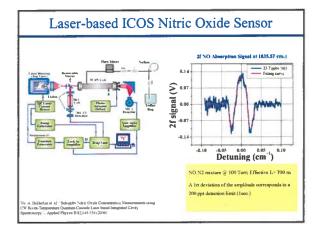



Merits of QEPAS based Trace Gas Detection

- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Immune to environmental noise- acoustic quadrupole
- Ultrasmall sample volume (< 1 mm³)
- Applicable over a wide range of temperatures and pressures, including atmospheric pressure
- Sensitivity is limited by the fundamental thermal TF noise: k_BT energy in the symmetric mode is directly observed
- Rugged and low cost compared to other spectroscopic techniques that require infrared detector(s)
- Sensitive to phase shift introduced by V-T relaxation processes additional selectivity
- · Potential for trace gas sensor networks

16

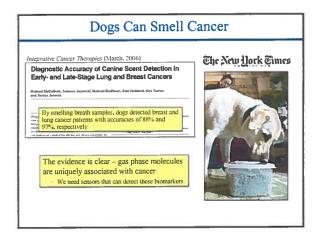
Molecule (Host)	Frequency, cm ⁻¹	Pressure, Torr	cm W/Hz	Pawer. mW	NEC (g=1s),
H ₂ O (N ₂)**	7306.75	60	1,9×10 rd	9.5	0.09
HCN (air: 50% RH)*	6539.11	60	< 4J+10"	50	0.16
C ₂ H ₂ (N ₂)***	6529.17	75	-2.5=10**	- 40	0.06
NH ₂ (N ₂)*	6528.76	60	5.4×10*	.38	0.50
CH ₄ (N ₂)*	6037.09	700	5.2=10**	17.6	3.0
CO1	6361.25	90	1.6=10*	26	410
CO ₂ (N ₂ +1.5% H2O) *	4991.26	50	1.4+10*	4.4	18
CH ₂ O (N ₂ :75% RH)*	2804.90	75	3.7 * 10 *	7.2	0.12
CO (N ₂)	2196.66	50	5.3×107	13	0.5
CO (propylene)	2196.66	50	7.4=10*	6.5	0.14
N2O (air+5%SF ₆)	2195.63	50	1.5+10*	19	0.007
C1HF (Freen 125)***	1208.62	770	2.6×10*	6.6	0.003
 Improved microresons Improved microresons With amplitude mode NEA = normalized noise NEC = noise equivalent on arison: convention et al, Appl. Opt. 42, 2119-3 	stor and double of alation and meta equivalent abso- ncentration for a nal PAS 2.2	l microreson rption coeffi vailable lase	stor rient. r power and v=		


Cavity Enhanced Spectroscopy

ICOS vs. CRDS High sensitivity High time resolution act required, slow detector is sufficient Multiple high-order transverse modes, off-axis propagation Relies on quast-random mode structure, non-critical alignment Low throughput (1-R)/2 max) No need for narrow line laser Sensitive to the source power fluctuations CRDS • Extremely high sensitivity possible – 10⁻¹¹ cm⁻¹¹ carrow ling high sensitivity possible – 10⁻¹¹ cm⁻¹² carrow ling resolved measurements, fast detector needed • Single transverse mode, on-axis propagation – critical alignment • Laser must be locked to the cavity mode • High time resolution act required, slow detector needed • Single transverse mode, on-axis propagation – critical alignment • Laser must be locked to the cavity mode • High time resolution act required, slow detector needed • Single transverse mode, on-axis propagation – critical alignment • Laser must be locked to the cavity mode • High time resolution act required, slow detector needed • Single transverse mode, on-axis propagation – critical alignment • Laser must be locked to the cavity mode • High time resolution act required, slow detector needed • Single transverse mode, on-axis propagation – critical alignment • Laser must be locked to the cavity mode • High time resolved measurements, fast detector needed

Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- · Environmental pollutant gas monitoring
 - = NO $_{\rm x}$ monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- · Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- · NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1988 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection



Why is Breath so Useful?

- Breath can be analyzed non-invasively from spontaneously breathing human subjects (neonate to the elderly), laboratory animals (from mice to horses), or from intubated patients (in ORs or ICUs).
- Breath can be sampled in the clinic, the home, the field, at the patient bedside, or in the physician's office by nurses, technicians, physicians and by the patient themselves.
- Breath analysis can be used for nutritional studies, exercise studies, to detect disease, stage disease, to monitor therapy or to monitor treatment

Terence Risby, Johns Hopkins University

NO as a Biomarker

- NO is biochemically involved in most tissues and physiological processes in the human body
- NO excretion increases in exhaled breath in lung diseases such as :
 - ✓ Asthma¹
 - ✓ Chronic Obstructive Pulmonary Disease²
 - ✓ Acute lung rejection³
 - ✓ Acute respiratory distress syndrome⁴
 - ✓ Pneumonia (useful for intubated patients)⁵

Abrag K. E. Wezheng, D.H. Landberg, Increased around of NO or enhalted not of submittees. Eur Dopp 1799, 6: 1364-1370.

(Neiman L.S. Lindack), S. Coppet, P. Edisone, S. Edmentone, P. Breuse, Ethical NO or C. D. An Plopper Cr. Care Med 1994, 152: pp.998-1402.

(Salicel Pix of Ethical SO on house long transplantation. A sensentative native of male reportion. Am Plopper Cr. Care Solid 1994, 1376-1376.

(Editor) 1276-1276.

(Edit

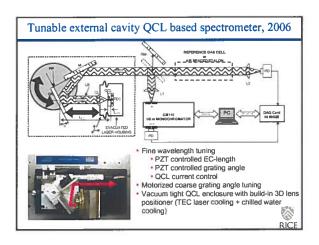
Chronic Obstructive Pulmonary Disease

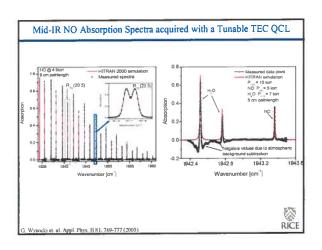
- Chronic obstructive pulmonary disease (COPD)
 - Accumulation of inflammatory products in the small airway lumen and wall
- Alveolar NO
 - Reflects peripheral lung inflammation and the response to anti-inflammatory treatment
 - Not affected by smoking or inhaled corticosteroids

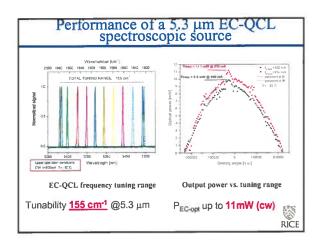
Source: http://jems.arra-assn.org/cg/content/full/250/17/235

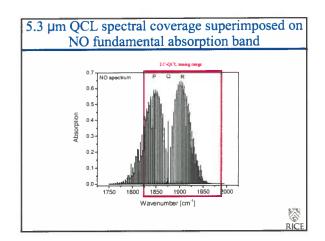
Curcumin Pilot Study

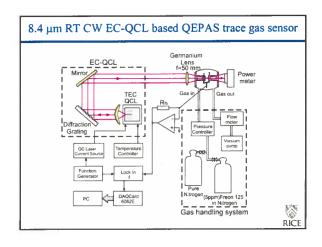
- Curcumin (Turmeric)
 - Polyphenol (diferuloylmethane)
 - Anti-inflammatory and anti-oxidant

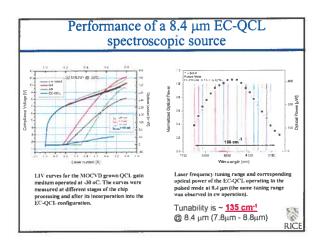

 Hypothesis: Curcumin reduces indices of inflammation in individuals with severe COPD

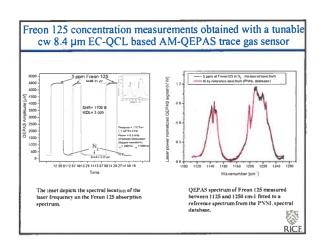


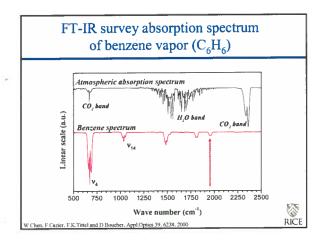

Collaborator: Dr. Amir Sharafkhaneh

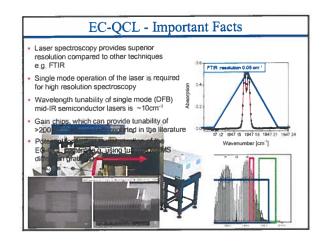

RICE

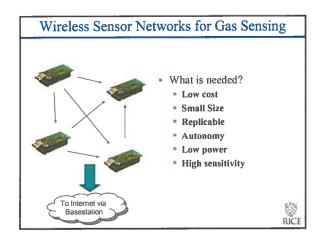

Widely Tunable, CW, TEC Quantum Cascade Lasers

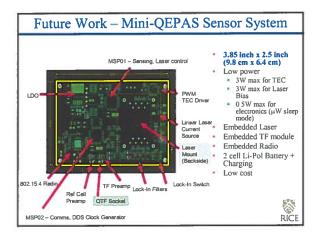




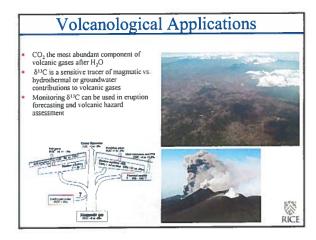






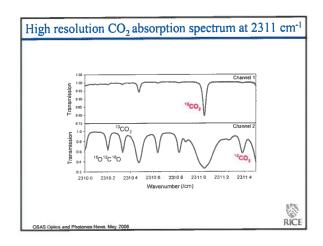


7 .



broadband absorbers, in particular VOCs and HCs

10


CO₂ Absorption Line Selection Criteria

- Three strategies:
 - Similar strong absorption of ¹²CO₂ and ¹³CO₂ lines
 - Very sensitive to temperature variations
 - > Similar transition lower energies
 - Requires a dual path length approach to compensate for the large difference in concentration between major and minor isotopic species-or-
 - Can be realized if different vibrational transitions are selected for the two isotopes (4.35 μm for ¹³CO₂ and 2.76 μm for ¹²CO₂)*
- For the first 2 strategies both absorption lines must lie in a laser frequency scan window
- Avoid presence of other interfering atmospheric trace gas species

 | Kanada | Paragraphic | Par

Proposed scheme by Curl, Uekara, Kosterey and Tittel, Oct. 2002

