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Distribution of high O5 levels
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Fiore, AM., et al., J. Geophys. Res., 103 1471-1480 (1998).
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The NO, cycle

Compared with other relevant chemistry, the
reactions below are fast.

(1) NO,+ hv NO + O
)0+ 0, O,
(3) 05+ NO & NO, + O,

Setting up a steady state in O and O, gives.
[0 ]_(kl[hv]\ [NO,]

=T, ol
On a summer day, the factor in () is about
1/100 in ppm units. [NO,J/[NO] almost 10.

Sources of NO and NO,

Although reduced by catalytic converters,
NO comes primarily from vehicle exhaust.

NO, is formed from NO by a series of

reactions involving radicals. ‘

OH + RH - Rg+H,0
Rg-0, — RO,
RO, + NO — ROg-NO,
When R=H, OH is regenerated among other !

processes making OH. HO, arises from the
oxidation of CO.

Achinic Flux,

photons cm2s-tm't

Original OH source
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Daniel Jacob, Atmospheric Chemistry, Chapter 11

The oxidative chain

ff"—"“““»OH +CO = CO,+H

H +0,#M SHO,+M

| HO,+NO >NO,+OH
( NO,+hv»NO+0(g.s.)
0+0,#M=>0,+M
0,+hv>0,+0('D)

O('D) + H,0 9 2 OH
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Simulated O, concentrations (ppbv) Spectroscopic monitoring techniques

»OH (UV laser fluorescence) e

> Radicals (NO,NO,,HO,?) IR Faraday ]
Magnetic Rotation

»CO, CO,, O; IR Photoacoustic P

Hydrocarbon emisstons, 10! atoms C em2s!

Spectroscopy
0 2 4 6 8 i 12 4 16 I;
NO, emissions, 10" molecules cm s !
Daniel Jacob, Atmospheric Chemistry, Chapter 12
i (VS
OH monitoring Quantum cascade laser (QCL)

OH is extremely reactive. This almost requires an in situ

monitoring scheme. p N
Quantum Cascade Laser”,

In situ detection by UV laser induced fluorescence can be Faist, J; Capasso, F; Sivco, BI; Sirtori, C;
done even though the fluorescence quantum yield at Hutchinson, Al; Cho, Ay. Science 264, 553
atmospheric pressure is tiny. (1994).

Converting its fluorescence signal into an OH
concentration is difficuit.

| believe no one is currently monitoring OH
concentrations.
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Quantum well lasing
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Faraday magnetic rotation

H =

or
detector

= RHCP

Amplifier
== | HCP

In gas phase, Faraday rotation arises from a difference in
refractive indices for circular polarization when AM=+1 (or -1).
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FRS Signal vs Polarizer Angle
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FRS and QCLs

Quantum cascade lasers are very quiet.
Modulating at 1 kHz, for a QCL producing a few
mW, sensitivity is determined by detector noise.

Recently QCL’ s producing 0.5 to 1 W cw are

becoming available. For these sensitivity should

be determined either by polarizer quality or power
saturation.

FRS observes refractive indices. These can power
saturate, but far less easily than absorptions do.
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Nitric oxide (NO) sensitivity
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Beijing NO monitoring
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NO, monitoring Houston
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Diurnal NO, signal in Houston
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Hour of day
Septamber 12, 2011 - Novembar 21, 2011
11/21/2011
Sunrise: 6:51; Sunset:5:24

9/12/2011
Sunrise 7:04; Sunset 7:32

“Typical” particle

sulfate 37%

mrate 4%

ammonium 11%

other 19%

organsc carbon 4%
elementary carbon 5%

Daniel Jacob, Atmospheric Chemistry, Chapter 8

Houston area particle sources

> From elsewhere
>Pollution from other urban areds

>»Remote fires: U.S. wildfires and Yucatan
agricultural

»>Sea salt

>Very fine sand from as distant as Sahara
> Our own particles

»>Vehicle exhaust (diesel especially)

>Industrial emissions (SO,, NH3, organics)
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Photoacoustic spectroscopy of
nonmagnetic small molecules

> Salt particle formation
>NHj; (done)
>80, (not yet done)
» Small molecule components of smog
>»CO (done)
>0, (not yet done)

Photoacoustic spectroscopy with a
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Lock-in
amplifier

Function
generator

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, F. K. Tittel

NH, concentration {ppb)

NH; monitoring in Houston

Houston Shp Channel

Houston Stup Channel
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QCL IR Monitoring

>Is sufficiently sensitive

> Reliably selective for species

> Can be applied to most small molecules
> Responds rapidly

» Can detect artifacts caused by pulses

> Can be matched with wind direction
>|s suitable for remote operations ‘

> Needs little downtime ‘




