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ABSTRACT   

We report on a novel quantum cascade laser (QCL) capable of operating in pure amplitude or wavelength modulation 
configuration thereby allowing the acquisition of background-free gas absorption-line profiles using quartz-enhanced 
photoacoustic spectroscopy (QEPAS). The QCL is composed of three electrically independent sections: Gain, Phase (PS) 
and Master Oscillator (MO). The non-uniform pumping of these three QCL sections allows laser wavelength tuning with 
constant optical power and vice-versa. Pure QEPAS amplitude modulation operating conditions were obtained by 
modulating the PS current, while pure wavelength modulation was obtained by modulating the MO section and slowly 
scanning the PS current.  

Keywords: quartz tuning fork, photoacoustic spectroscopy, quantum cascade laser, gas sensing  
 

1. INTRODUCTION  
The combination of single-mode emission and mode-hop free tunability makes quantum cascade lasers (QCLs) 
extremely suitable for sensitive and selective trace-gas detection. High detection sensitivities can be achieved by 
implementing a wavelength modulation (WM) technique in the kHz-frequency range, which reduces the 1/f-noise 
originating mainly from laser intensity fluctuations and mechanical instabilities. In WM, the laser frequency is 
simultaneously modulated by a ramp wave of sub-Hz frequency to the temperature or current control and a sine wave of 
kHz frequency to the current control. This produces multiple harmonics in the transmitted intensity that a lock-in 
amplifier can detect. In other words, a WM scheme enables detection of an absorption profile at selected frequencies. 
However, the modulation of the current produces also modulation of the emitted output power at the same frequency. 
The origin of this residual amplitude modulation (RAM) in WM and its distorting effects on various harmonic signals 
has been studied in detail in several papers [1-4]. The RAM gives rise to a high background signal in 1f-detection with a 
small absorption signal superimposed. To circumvent the problem of high background signals, detection at twice the 
applied modulation frequency (2f-detection) has been favored, although the RAM contribution distorts the acquired 
signal [5]. In fact, with 2f-detection, the acquired Lorentzian gas-absorption profile exhibits a second-derivative 
lineshape with two unbalanced minima due to the RAM contribution. In order to address the problem, electronic 
cancellation of RAM has also been attempted by several authors [6, 7]. Recently, a fiber-optic technique capable to 
eliminate the concentration-independent RAM component at the optical level was also reported [8].  
While WM with 2f-detection has the advantage to be background-free, it does not reproduce the actual absorption profile 
of a gas line. The WM approach requires post-processing integration of a near-pure first harmonic derivative signal (with 
1f-detection) to recover the gas absorption line shape. An appropriate choice of the lock-in detection phase is needed as 
well [9]. Recently, a method for recovering absolute absorption line shapes from noisy environments based on pure 
amplitude modulation from an external lithium niobate amplitude modulator was  proposed [10]. The overall signal-to-
noise ratio is comparable to that of conventional second harmonic WM, but the apparatus is quite complex. 
In this work, we employed a novel QCL source allowing modulation of the laser intensity and frequency independently 
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of each other. The QCL structure is composed of three electrically independent sections: the gain, the Phase (PS) and the 
Master Oscillator (MO) section. The QCL was employed in a quartz-enhanced photoacoustic spectroscopy (QEPAS) 
sensor [11, 12] for the acquisition of a N2O absorption line. When the PS current is modulated, the optical power is also 
modulated, while the emission wavelength remains constant. With this condition, a pure amplitude modulation (AM) 
configuration is achieved. By adding a voltage signal to the MO section QEPAS background-free Lorentzian line-shape 
spectra were obtained for the targeted N2O absorption line. When the MO current is modulated, the PS current can be 
adjusted in order to maintain constant the optical power during modulation. In this manner, a pure wavelength 
modulation, without any RAM contribution is obtained and the QEPAS spectra show a second-derivate Lorentzian 
function lineshape. To demonstrate the achievement of a pure WM and AM operating conditions, we implemented the 
QCL in a quartz enhanced photoacoustic sensor (QEPAS) and selected N2O as the target gas. 

2. AMPLITUDE MODULATION AND WAVELENGTH MODULATION SPECTROSCOPY 
Amplitude modulation (AM) spectroscopy is the simplest realization of a laser-based absorption technique. A beam of a 
tunable laser is sent through a gas sample and the transmitted intensity is measured with a detector. A mechanical 
chopper modulates the light intensity at certain frequency. The detector signal is then demodulated at the chopping 
frequency by using a lock-in amplifier. The concentration of the absorbing species can be calculated from the relative 
change of the intensity according to Lambert-Beer’s law. The drawback of this simple technique is that its sensitivity is 
limited by 1/f-frequency noise. However, its influence can be greatly reduced by shifting the detection to higher 
frequencies, in the kHz range. If the laser frequency is scanned across the absorption feature of the target species, the 
typical Lorentzian-like profile of the gas absorption line can be recovered. Despite the simplicity of the technique and the 
possibility to recover the actual absorption profile of a gas line, AM spectroscopy has several disadvantages when 
implemented in a QEPAS setup: i) the absorption signal is small and is positioned on a high background. Usually, a 
normalization technique is used to extract the small absorption signal from the high background noise; ii) QEPAS 
requires frequencies in the kHz range and commercially available optical choppers in such a frequency range have a 
frequency resolution of 1 Hz, much larger than the frequency band typical of quartz tuning forks resonances. Indeed, 
QEPAS requires a frequency stabilization of at least 0.01 Hz [13-17]; iii) optical choppers in the kHz range are quite 
noisy, adding a significant noise contribution to the detected QEPAS signal.  
Wavelength modulation (WM) spectroscopy is usually accomplished by modulating the QCL injection current, while the 
wavelength emission is slowly tuned through an absorption feature of the target species to be detected by increasing (or 
decreasing) the injected current. This current modulation produces changes of the emitted optical power and wavelength, 
thus leading to a combined wavelength modulation and intensity modulation of the QCL, with a phase difference 
between the two modulations. There is no means to separate these two effects when the injection current is modulated. 
The theoretical description is based on the instantaneous laser frequency: 
(ݐ)߭  = 		 ߭଴ − Δ߭cos	(߱ݐ + ߰)                 (1) 	
where ν0 is the optical carrier frequency and ω = 2πf is the modulation angular frequency of the laser frequency due to 
the laser  current modulation occurring at the same angular frequency and ψ is the initial phase. This produces a 
sinusoidal modulation of the laser intensity P at the same angular frequency: 

(ݐ)ܲ  = 		 ଴ܲ − Δܲcos	(߱ݐ)                 (2) 	
A Taylor-series expansion of the absorption line-shape α[ν(t)] for a small Δν gives: 
ሿ(ݐ)ሾ߭ߙ  = ଴ߙ + ݐ߱)ݏ݋Δ߭ܿ(0߭)′ߙ + ߰) + ଵଶ ݐ߱)ଶݏ݋ଶܿ(Δ߭)(0߭)′′ߙ + ߰)              (3)	
 
where α0 can be considered to be the background absorption contribution. The laser light transmitted through a weakly 
absorbing simple according to Lambert-Beer’s law for a pathlength L is given by: 
 ௧ܲ(ݐ) = ሾ ଴ܲ + Δܲcos(߱ݐ)ሿ ቂ1 − ܮ(଴߭)ߙ − ᇱ(߭଴)Δ߭ߙ cos(߱ݐ + ܮ(߰ − ଵଶ ᇱᇱ(߭଴)Δ߭ଶߙ cosଶ(߱ݐ + ߰) 	ቃ  (4)ܮ
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1f-QEPAS spectra show a background-free Voigt line-shape, demonstrating the achievement of a pure AM condition. 
The FWHM Lorentzian contribution to the Voigt fit for the spectrum at 120 mA is 0.0267 ± 0.0007 cm-1 [25], close to 
the pressure-broadening coefficient of 0.026 cm-1 in air for the operating pressure condition, as reported in the HITRAN 
database [24].  For these reasons, the pure AM technique can be used for gas sensing applications, especially for the 
detection of broadband absorbers, as well for investigations of absorption linewidth broadening phenomena in an 
unrelated gas matrix. 
 

6. CONCLUSIONS 
In this manuscript, we demonstrated the capability of a novel QCL structure composed by three different sections for 
pure amplitude and pure wavelength modulation spectroscopy targeting gas sensing applications. Both techniques have 
been investigated by using a QEPAS-based sensor. The structure of the QCL was designed in order to allow modulation 
of the laser wavelength while the optical power remains constant and, conversely, modulation of the optical power while 
the wavelength remains fixed. With pure amplitude modulation and 1f-detection, we recovered the Voigt absorption line-
shape of the selected N2O absorption with a full-width-half-maximum value close to the pressure-broadening coefficient 
of 0.026 cm-1 reported in the HITRAN database. With pure wavelength modulation and 2f-detection, a nearly pure 
second derivative line-shape of the absorption line was recorded without a RAM contribution. 
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