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ABSTRACT   

We report here an analysis of the performance of a quartz-enhanced photoacoustic (QEPAS) system operating in a 
pulsed mode by employing a quantum cascade laser (QCL). The QEPAS system is based on a quartz tuning fork (QTF) 
having fundamental resonance frequency of 4.2 kHz and a first overtone resonance of 25.4 KHz. Water vapor was used 
as a target gas by selecting its absorption line falling at 1296.5 cm-1 with a line strength of 1.69⋅10-22 cm/molecule. The 
QEPAS signal was investigated, while varying the QCL duty-cycle from continuous wave operation, down to 5%, which 
corresponds to a laser power consumption of 0.17 mW and a pulse-width of 4 μs.  
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1. INTRODUCTION  
Gas sensing techniques based on laser absorption spectroscopy are excellent candidates for real-world applications 
requiring fast and in-situ measurements. When operating at atmospheric pressure, trace gas sensors based on optical 
techniques present two main sources of power consumption: a laser source that typically requires an air- or water-cooled 
system for temperature stabilization and a cooled infrared photodetector.  Quartz-enhanced photo-acoustic spectroscopy 
(QEPAS) is the only laser-based technique that does not require an optical detector, since the quartz tuning fork (QTF) 
itself acts as an uncooled, wavelength insensitive detector with negligible power consumption [1,2]. Therefore, QEPAS 
is an ideal technique for the realization of trace gas sensors with low-power consumption. The power consumption of a 
QEPAS gas sensor system could be reduced even further if operating with pulsed laser sources, avoiding in this way the 
use of their cooling systems. 
 The possibility to employ pulsed laser sources for QEPAS can also be advantageous for the application of this sensing 
technique in the THz range, which represents the most promising spectral range in terms of sensitivity and selectivity [1, 
3-6]. Up to now the only type of laser sources employed for THz QEPAS sensing are continuous-wave quantum cascade 
lasers (QCLs) [3-6]. However, although more than a decade of R&D effort, THz QCLs still operate only at cryogenic 
temperature [7, 8]. The highest temperature operation reported to-date for a THz QCL is 199.5 K in a pulsed mode [9] 
and this temperature value decreases to 129 K in continuous-wave operation [10]. The main reason for THz QCLs 
limited thermal properties are the large threshold currents and voltages required, leading to strong local heating effects in 
the device active regions. Above threshold for continuous-wave (CW) and high duty-cycle operation, the device active 
region temperature becomes much higher than that of the heat sink [11, 12] and the consequent reduction of gain 
represents the major impediment for THz QCL room-temperature (RT) operation [8]. An alternative approach to achieve 
RT operation in the THz range consists in in high-power two-color mid-IR QC-lasers for intracavity THz difference 
frequency [13]. These sources are monolithic and operate at RT, and wide THz tunability can be obtained, however the 
highest output power reported to date is 1.9 mW in a pulsed mode and 14 μW in a CW mode [14]. 
In contrast to continuous-wave QCLs, the line width of lasers operated in a pulsed mode is broadened due to thermal 
chirping. However, for applications, which do not require ultra-high selectivity, e.g. concentration measurements with 
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strongly pressure-broadened spectroscopic features or measurements at low pressure using well-isolated absorption lines, 
a pulsed QCL can be an adequate radiation source, 
 The landscape offered by state-of-art of THz QCLs suggests an interesting perspective. Both continuous wave and 
pulsed operations require low working temperatures in order to achieve high power or peak power for pulsed operations. 
However, in pulsed operation THz lasers provide output powers more than two orders of magnitude higher with respect 
to intracavity THz difference frequency QCL sources operating at room temperature [15]. The QEPAS technique has 
already proven to be effective also under pulsed operations [16-18]. The investigation reported in this work is focused on 
the characterization of the QEPAS response of a resonator in terms of signal amplitudes, signal shape and optical noise 
levels, when the duty cycle of a pulsed QCL is varied from the CW regime down to few µs pulse widths. This 
investigation allowed us to analyze different sources of noise as well as the QEPAS signal shape and intensity, providing 
useful guidelines for the design of low power consumption sensors based on a pulsed modulation approach. The final 
goal of the study is the implementation of the pulsed modulation approach for THz QEPAS sensing.  

2. PULSED QUANTUM CASCADE LASER 
 Quantum cascade lasers (QCLs) are characterized by the ultrafast carrier lifetimes (on the order of picoseconds), 
which means that an ultra-wide range of modulation frequencies up to GHz should be possible [19]. The thermal effects 
in a traditional mid-IR QCL active region are described by the heat diffusion equation in two dimensions [20]. For 
frequencies in the order of few tens of kHz and pulsed duration below 1 µs the active region temperature is nearly 
independent of the pulse frequency. This is due to the relatively long time between pulses, which allows the active region 
to dissipate the heat accumulated during the pulse and recover the heat sink temperature [21]. Since in QEPAS the 
current modulation frequencies are set by the QTF flexural mode resonances (typically <40 kHz), the only parameter to 
work with, to limit the QCL temperature increases, is the pulse duration. For pulse-widths in the order of tens of 
nanoseconds, negligible active region heating occurs. Above this value, the active region temperature can increase of 
tens of °C. For example in [20] it was shown that for a pulse-width of 100-ns pulse and a modulation frequency of 1 
MHz (duty cycle of 10%), starting from a heat sink temperature of 270 K, resulted in a maximum active region 
temperature of 370 K. The emission wavelength of a DFB laser is given by the Bragg grating period ߉ and by the 
temperature-dependent effective refractive index of the waveguide mode	݊௘௙௙(ܶ): ߣ(ܶ) =  (1)																																																																																														௘௙௙(ܶ)݊߉2
When DFB QCLs operates in pulsed mode, a blue-shift of the emission wavelength with respect to CW mode is 
expected, due to the lower dissipated electrical power, which corresponds to lower active region temperatures. The 
wavelength shift during a single pulse of 1μs can be as high as 1 cm-1 [22, 23]. Furthermore, it was demonstrated that 
operating in pulsed mode, a broadening of the emission occurs because of current-induced self-heating of the QCL 
during each pulse. With QCLs in continuous-wave operation, it is possible to obtain linewidths of < 1 MHz, limited by 
the spectral noise induced by the current driver. In pulsed operation, the smallest linewidth (obtained with < 10 ns-long 
pulsed) lies in the few hundreds of MHz range. 
  

3. EXPERIMENTAL SETUP 
The schematic of the QEPAS setup is shown in Fig. 1. The laser source employed in this work was a mid-IR DFB QCL 
emitting at 7.8 μm, driven by a custom-made current pulse generator with a pulse rise-time of 50 ns. The collimated laser 
beam was focused between the prongs of the quartz tuning fork (QTF) by means of a lens with a focal length of 50 mm. 
The QTF is located in an enclosure equipped with two windows. The QTF has a prong length of 19 mm and width of 1.4 
mm was employed as the acousto-electric transducer in the QEPAS system [24]. The QTF thickness is 0.8 mm and the 
space between the prongs is 1.0 mm. The fundamental and 1st overtone modes resonance frequencies of the investigated 
custom QTF fall at f0~4.25 kHz and f1~25.4 kHz, respectively [24, 25]. The light exiting from the housing is collected by 
a lens and focused on a mid-infrared detector or a pyrocamera for alignment.  
 For our investigation, water vapor was selected as gas target. The H2O concentration was fixed at 1.7% by using a 
Nafion humidifier. A hygrometer was connected to the upstream side of the gas cell in order to monitor the water vapor 
content. The QEPAS sensor was operated at atmospheric pressure. The selected absorption line falls at 1296.7 cm-1 with 
line strength of 1.69⋅10-22 cm/molecule. At a 20° C heat sink temperature and CW operation, a QCL current of I=263 mA 
allows the laser emission to be resonant with the selected H2O absorption line.  
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QTF prongs was optimized under CW operation and 99.5% of the laser light passed between the prongs. With the laser 
operated in pulsed mode the portion of the transmitted light is reduced due to a change in power distribution profile of 
the QCL beam and dropped down to 98.8% at 5% duty cycle. As a consequence the QTF background noise level will be 
influenced by the selected duty cycle. 
 

5. PULSED QEPAS 
  In Fig. 4a), the simulated absorption spectra for a gas mixture at of standard air and 1.7 % of H2O at 
atmospheric pressure in the range 1296 cm-1 - 1297.1 cm-1, using HITRAN database [29] is shown. Two peaks at 1296.5 
cm-1 and 1296.7 cm-1 related to the water vapor are visible. .  
In Fig. 4b), we reported the QEPAS spectra measured with the laser operated in CW mode with I = 263 mA at T = 20 
°C. A ramp of 250 mV and a sinusoidal dither at f1/2 with a peak-to-peak amplitude of 100 mV was simultaneously 
applied to the laser current. The focused laser power between the prongs of the QTF was 110mW. 
 

Figure 4. a) HITRAN simulation of the absorption spectra calculated for a gas mixture of 1.7% of H2O in standard air at atmospheric 
pressure. The peaks at 1296.5 cm-1 and 1296.7 cm-1 are due to water vapor. b) Wavelength modulation QEPAS spectrum measured for 
the same gas mixture and pressure, with the QCL source operating in a CW condition and emission centred at 1296.5 cm-1. 
 
The QEPAS CW spectral scan in Fig. 4b) resembles a 2nd derivative-like shape of the absorption line at 1296.5 cm-1. The 
asymmetry between the two minima is due to the partial overlap with the absorption line falling at 1296.7 cm-1, which 
makes the first minima higher than the second and displaying a first absorption peak (at 5s) in place of the background 
level visible at the end of the ramp.  
 The full-width-half-maximum (FWHM) of the absorption line at 1296.5 cm-1 is 0.056 cm-1, several times lower than 
the laser linewidth Δν, when it operates in a pulsed mode. The Taylor series expansion of the absorption coefficient, 
typically employed to predict the line shape and the background level of QEPAS spectra, cannot be applied since it is 
valid only if Δν << FWHM.  This means that, even if the wavelength modulation and 2f-detection technique is 
employed, the QEPAS pulsed spectra could not exhibit the second-derivative of a Lorentzian line shape and cannot be 
background-free. 
 There is another aspect that must be considered related to the operation with square-wave current pulses. A pulsed 
excitation in fact, introduces a bunch of unwanted multiples of the modulation frequency f1/2 as shown in Fig. 5. The 
Fourier transform of a burst of 200 pulses for a duty cycle of 5% and 50% compared as extreme cases of a set of 
measurements. Additional duty cycles of 40%, 30%, 20%, 10% were also analyzed. For a duty cycle of 50%, only a 
slight portion of the optical power is distributed to the harmonics of f1/2. This portion increases as the duty cycle 
decreases and becomes comparable to the power modulated at f1/2 itself, as shown in Fig. 5 for a 5% duty cycle. This 
means that the QCL power is dispersed over a dense spectrum of frequency components that does not contribute to the 
QEPAS signal at the resonance frequency. This is expected to further reduce the QEPAS peak signal as the duty cycle 
decreases. 
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of instrumental background noise. These analyses can be used as a guideline for the realization of pulsed QEPAS sensors 
operating with QCLs with particular interest in the THz spectral range. 
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