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ABSTRACT  

We report here on the realization of a single-tube on-beam quartz-enhanced photoacoustic (QEPAS) spectroscopy sensor 
employing a custom-made quartz tuning fork (QTF) with a large prong spacing. The prongs of the QTF have been 
designed in order to provide a quality factor twice higher when the QTF operates in the first overtone flexural mode than 
in the fundamental mode. The influence of the microresonator tube on the main parameters characterizing the sensing 
performance of the QEPAS spectrophone, including the quality factor, the magnitude of the QEPAS signal and the 
associated background noise was investigated in detail. 
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1. INTRODUCTION
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a well-established laser-based technique for gas sensing. 
QEPAS offers compactness, high detection sensitivity and selectivity, utilizing a quartz-tuning fork (QTF) to transduce 
the sound wave produced by an absorbing gas into an electrical signal [1-5]. The QEPAS sensitivity can be further 
enhanced by means of acoustic amplification provided by two micro-resonator tubes and the QTF positioned between 
them. Until 2013, all QEPAS sensors reported in the literature made use of commercial QTFs designed for timing 
application to vibrate at a resonance frequency of 32,768 Hz. These QTFs have prongs 3 mm long, 0.35 mm wide and 
0.34 mm thick with a prong spacing of ~0.3 mm. The QTFs have a quality factor as high as 10,000 in air, increasing up 
to 100,000 in vacuum. The design parameters of the two tubes, namely the inner diameter (ID), the outer diameter (OD) 
and the length that maximize the QEPAS response have been experimentally determined and fall in the range 0.5 mm-
0.84 mm for the ID, 0.8mm-1.2mm for OD, while the length of a single tube falls in the range 3.9-5.1 mm. the QEPAS 
signal-to-noise ratio (SNR) was amplified up to 30 times with respect to that measured for the bare QTF using the two 
micro-resonator tubes [6]. 
Recently, custom-made QTFs with prong spacing >700 µm were implemented in QEPAS sensors. In particular, the use 
of custom QTFs is mandatory to extend QEPAS operation to the THz spectral range. The requirement of such custom 
QTFs was the necessity to have larger prong spacing. THz sources are typically characterized by long wavelengths (60-
300 µm), low beam spatial qualities and high divergence angles, thus making it impossible for the laser beam to pass 
between the two prongs of a standard QTF, spaced by only 300 µm [7-10].   
The first implementation of micro-resonator tubes with a custom-made QTF was reported in Ref. [11]. The employed 
tuning fork had a prong spacing of 0.8 mm and was characterized by a fundamental resonance frequency of 7205 Hz and 
a quality factor of 8536 at atmospheric pressure. A pair of 23 mm long tubes, whose inner diameter was 1.3 mm was 
employed. The gaps between the QTF and the tubes were fixed to 30 μm. The use of such micro-resonator tubes allowed 
a 40 times amplification of the QEPAS SNR. 
Custom tuning forks also opened the way to two novel approaches to increase the sensing performance of a QEPAS 
spectrophone. First, QTFs with larger prongs made it possible to accommodate between them a single-tube resonator 
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(SO-QEPAS), with a pair of slits realized where the acoustic pressure antinode is located. With this approach, the size of 
the QEPAS spectrophone was reduced with respect to a dual-tube configuration [12, 13]. Secondly, QTFs can be 
specifically designed to enhance the first overtone mode providing a higher quality factor with respect to the 
fundamental mode [14, 15]. 
In this work, we combined these two approaches and investigated the sensing performance of a single-tube on-beam 
QEPAS spectrophone exploiting a custom QTF operating in the overtone mode. We analyzed in detail how the geometry 
of the resonator tube influences the sensing performance of the QEPAS spectrophone.  

2. CHARACTERIZATION OF THE BARE QUARTZ TUNING FORK
The geometry of the QTF prong can be designed in order to enhance the quality factor of the overtone mode with respect 
to the fundamental mode. The quality factor of a prong resonating in air is determined by two classes of loss 
mechanisms: extrinsic losses, mainly due to the damping by air and intrinsic losses mainly due to interactions with its 
support structure (i.e. support losses) [16, 17]. Hence, for a given resonance frequency, the quality factor of a QTF 
includes both loss mechanisms. For the fundamental mode, the support losses can be neglected and the quality factor can 
be related to the prong width w, prong length L and crystal thickness T by [15, 16]: ~      (1) 
 The quality factor of an overtone mode is mainly dominated by the support losses, which can be expressed for a 
cantilever beam by [14]: ~      (2) 

Even if the support losses increase with the mode number n (n = 1.194 for the fundamental mode and 2.988 for the first 
overtone mode), it is possible to obtain a larger Q for the first overtone mode with respect to the fundamental one by an 
appropriate selection of the parameter L/w. However, when w is reduced, the extrinsic losses could start to dominate also 
for the overtone mode. For this reason, the best way to obtain a higher quality factor for the overtone mode is to increase 
the prong length, while keeping w not below 1 mm. According to these considerations, the sizes of the selected QTF are 
listed in Table 1. 

Table 1. Dimensions of the custom tuning fork. 

Prong Length L (mm) 19 
Prong width w (mm) 1.4 

 Quartz Crystal Thickness T (mm) 0.8 
Prong spacing (mm) 1 

The custom-made QTF was realized starting from a z-cut quartz wafer. Standard photo-lithographic techniques were 
used to etch the QTFs by using a mask and chemical etching in a hydrogen fluoride solution. Cr and Au patterns were 
photo-lithographically defined on both sides of the wafer and applied by means of shadow masks. For the electrical 
characterization of the QTF, we employed the excitation and detection scheme reported in detail in [16]. A function 
generator was used to provide a sinusoidal voltage to the QTF. The piezoelectric current passes through a current-to-
voltage converter using an operational amplifier. The output voltage is measured by a lock-in amplifier. In order to 
determine the QTF resonance properties and the quality factor, the frequency of the function generator was varied and 
processed by the lock-in output via a data acquisition card and computer. The QTF resonance curves for the fundamental 
and the overtone mode are shown in Fig. 1. 
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11.0 mm and a slit width of 250μm. With these conditions, we measured a SO-QEPAS signal 40 times higher with 
respect to a bare QTF. An additional improvement in QEPAS sensitivity can be obtained by using a novel QEPAS 
spectrophone composed of two acoustic resonators operating at the two antinodes of the overtone mode and employing a 
double-pass beam configuration. Furthermore, since the optimal gold contact configuration for the 1st overtone flexural 
mode polarity requires changes of the electrodes along the prongs, obtainable by an octupole gold pattern configuration, 
additional enhancement of the QEPAS SNR can be expected by employing this type of QTF electrode design. 
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