

Spectroscopic Applications of Quantum Cascade Lasers

F.K. Tittel, A. Kosterev, and R.F. Curl Rice University Houston, USA

> fkt@rice.edu http://www.ruf.rice.edu/~lasersci/

OUTLINE

PQE 2000 Snowbird, UT

- Motivation and Background
- Design of QC-DFB Laser Spectrometers
- Real World Applications
- Outlook and Summary

Wide Range of Gas Sensor Applications

- Urban and Industrial Emission Measurements
 - ☐ Industrial Plants
 - ☐ Combustion Sources
 - Automobile, Trucks and Aircraft
- * Rural Emission Measurements
 - ☐ Agriculture
- Environmental Monitoring
 - ☐ Atmospheric Chemistry
 - Volcanic Emissions
- Spacecraft and Planetary Surface Monitoring
 - ☐ Crew Health Maintenance & Life Support
- Chemical Analysis and Industrial Process Control
 - ☐ Semiconductor Industry
- Medical Applications
- Law enforcement Applications

Vulcano, Italy

Stromboli, Italy

International Space Station

Mars NASA Pathfinder Climate Monitoring

Air Composition

Main Con	nponents	Trace Con	mponents
⋄ Nitrogen	78%	❖ Methane	1.7 ppm
Oxygen	21%	❖ CO	0.4 ppm
. ₩ater	0.8%	N_2O	0.3 ppm
CO_2	0.03 %	\bullet O ₃	0.03 ppm
		*	

Existing Techniques for Trace Gas Detection

Absorption Spectroscopy

Beer's Law

$$I_1(v)=I_0 \cdot e^{-\alpha(v)\cdot L}$$

 $\alpha(v)$ -absorption coefficient (cm⁻¹), L- path length (cm), v - frequency (cm⁻¹)

Molecular Absorption Coefficient

$$\alpha(\nu) = C \cdot \frac{S}{\Delta \nu} \cdot g(\nu)$$

C-gas concentration (cm⁻³), S - absorption line strength (cm), Δv – linewidth (cm⁻¹)

g (v) - line shape function: Gaussian, Voigt, or Lorentzian profile

Spectral Coverage by Diode/QC Lasers

Key Characteristics of Quantum Cascade Lasers

- * Laser wavelengths cover entire range from 3.4 to 17μm determined by layer thickness of same material
- Intrinsically high power lasers (determined by number of stages)
 - □ CW: 0.2W @ 80 °K, ~100 mW single frequency
 - ☐ Pulsed: 0.5W peak at room temperature, ~15 mW avg. @ 300 °K
- High Spectral purity (single mode)
- * Wavelength tuning by current or temperature scanning
- * High reliability: low failure rate, long lifetime, robust operation and extremely reproducible emission wavelengths

Trace Gas Detection with a Multipass Cell

Motivation for CH₄ Detection

- Contributor to global warming
- Important in tropospheric and stratospheric chemistry
- Emitted by microorganisms
- Can leak from gas pipelines

CH₄ and N₂O Absorption Spectra

Absorption Spectrum of Room Air

¹³CH₄ Absorption Line at 1260.5 cm⁻¹ on the Shoulder of H₂O line

Isotopic Composition of CH₄

Pressure: 16.9 Torr Pathlength: 43 cm

Continuous Detection of Ambient CH₄ for a 7 Day Period

Laser-Based CH₄ Detection Reported to Date

First overtone

 \square band: $2v_3$

line intensity: $\sim 1.33 \cdot 10^{-21}$ cm

source: diode laser at 1.66 µm (Uehara and Tai, 1992)

sensitivity: $600 \text{ ppb} \cdot \text{m} \cdot \text{Hz}^{-1/2}$

Fundamental

 \square band: v_3 (CH asymmetric stretch)

line intensity: $\sim 2.13 \cdot 10^{-19}$ cm

source: diode laser at 3.2 µm DFG (Rice, 1995)

sensitivity: 12 ppb·m·Hz-1/2; 4 ppb·m·Hz-1/2 (Rice, 1999)

 \square band: v_4 (CH bend)

line intensity: $\sim 0.97 \cdot 10^{-19}$ cm

source: lead-salt diode laser at 7.8 µm (Webster et al, 1994)

sensitivity: 14 ppb·m·Hz-1/2; 5 ppb.m.Hz-1/2 (Rice, 1999)

Measured Emission from Rice Paddies of Different Countries

Country	Total Area of Rice Paddies (10 ¹⁰ m ²)	Percent of World Rice Area	Total Rice Grain Yield (000 t)	Percent of World Rice Grain	Annual CH ₄ Emissions (Tg)	Percent of Average CH ₄ World Emission
China	32.2	21.8	174,704	36.8	13-17	37.6
India	42.23	28.6	92,422	19.5	2.4-6	10.5
Japan	2.31	1.6	13,421	2.8	0.02-1.04	1.3
Thailand	11.7	7.9	19,241	4.1	0.47-8.77	11.6
Philippines	3.5	2.4	8,919	1.9	0.31-0.70	1.4
USA	1.0	0.7	6,388	1.3	0.04-0.47	0.6
Total	92.94	63.0	315,095	66.5	16-34	63.0
World Total	147.5	100	473,489	100	25-54	100

Monitoring Methane in Rice - Based Agroecosystem

Ethanol Absorption Spectrum at 1259.5 cm⁻¹

Nitric Oxide: Various Human Functions

Cavity Enhanced QC Laser Spectroscopy

Cavity Enhanced Spectroscopy of CO₂, H₂O and NO at 5.2 µm

Summary

QC-DFB Laser Based Trace Gas Sensors Compact, tunable, robust \square High sensitivity (<10⁻⁴) and selectivity (<50 MHz) ☐ Fast data acquisition and analysis \square Detected trace gases: CH₄, N₂O, H₂O, NO, CO₂ at 5.2 and 8 μ m ☐ Isotopic Compositions Current Applications in Trace Gas Detection □ CH₄: NOAA, NASA-JPL, and gas industry Future Directions ☐ More efficient suppression of optical interference fringes ☐ Pulsed quasi room temperature operations ☐ Detection of complex molecules Cavity enhanced spectroscopy ☐ Medical Diagnostics: NO, CO, CO₂ and NH₃

Strategy for NH₃ Concentration Measurements

Worldwide Megadirty Megacities

	Population, m		Sulphur	Particulate	Lead	Carbon	Nitrogen	Ozone
	1990, ext.	2000, proj.	dioxide	matter		monoxide	dioxide	
Bangkok	7.16	10.26	0	•	0	0	()	0
Beijing	9.74	11.47	•	•	0	_	0	0
Bombay	11.13	15.43	0	•	0	0	0	_
Buenos Aires	11.58	13.05	_	0	0	_	_	_
Cairo	9.08	11.77	_	•	•	0	_	_
Calcutta	11.83	15.94	0	•	0	_	0	_
Delhi	8.62	12.77	0	•	0	0	0	_
Jakarta	9.42	13.23	0	•	0	0	0	0
Karachi	7.67	11.57	0	•	•	_	_	_
London	10.57	10.79	0	Ō	Ō	0	0	0
Los Angeles	10.47	10.91	0	0	0	0	0	•
Manila	8.40	11.48	0	•	0	_	_	_
Mexico City	19.37	24.44	•		0	•	0	•
Moscow	9.39	10.11	_	0	0	0	0	_
New York	15.65	16.10	0	0	0	0	Ō	0
Rio de Janeiro	11.12	13.00	0	0	0	Ō	_	_
Sao Paolo	18.42	23.60	0	0	0	0	0	•
Seoul	11.33	12.97	•	•	0	Ŏ	Ö	Ŏ
Shanghai	13.30	14.69	0		_	_	_	_
Tokyo	20.52	21.32	0	Ŏ	_	0	0	•
Source: United Nation		High pollution		te to heavy polluti	ion () L	ow pollution -	No data availab	ole

CRLAS Principle

Cavity Enhanced QC-Laser Spectroscopy

Cavity Enhanced Absorption

Observed absorption:
$$A_{obs} = \frac{I_{empty} - I_{sample}}{I_{empty}} = \frac{\alpha L}{T + \alpha L}$$

Absorption gain:

$$g = \frac{A_{obs}}{\alpha L} = \frac{1}{T + \alpha L}; \quad g \approx \frac{1}{T} \text{ if } \alpha L \ll T$$

Detection of CH₄ Near 1241 cm⁻¹

16 ppm of CH₄ in 50 Torr of air

Estimate of Detection Sensitivity

Simulated false "lines" are always $\Omega = 0.01\%$

9The detection limit for absorption is 10⁻⁴

Summary and Future Outlook

- •A cw QC-DFB laser based gas sensor at 8 µm was designed and tested for methane and nitrous oxide detection
- •A detection limit of 10⁻⁴ for absorption was obtained
- •Isotopic composition measurements were demonstrated

Future development

- ◆ More efficient suppression of optical interference fringes
- ◆ Detection of more complex organic molecules
- ◆ Room-temperature operation

Cavity Enhanced QC Laser Spectroscopy

HITRAN Simulated NO Absorption Spectrum

