

Laser Spectroscopic Trace Gas Sensing: Novel Applications and Future Directions

S.G. So¹, G. Wysocki¹, E.J. Welsh², S. Narayanan³, D.L. Jones³, J.P. Frantz², A.A. Kosterev¹, R.F. Curl¹, F.K. Tittel¹

¹Rice Quantum Institute ²Rice University ECE Department ³Univ. Illinois Urbana-Champaign ECE Department

OUTLINE

Nokia

Dallas, TX Feb. 8, 2006

- Motivation Trace Gas Detection
- Laser-based Gas Sensing Technology
- Quantum Cascade (QCL) and Interband Cascade (ICL) lasers
- Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) and portable sensors
- Cooperative Gas Sensing and Asynchronous Sensor Networking for Detection Applications
- Summary

Air Pollution: Houston, TX

Trace Gas Detection Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (early fire sensing)
 - Automobile Emissions
- Rural Emission Measurements
 - Agriculture
- Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Chemical, Pharmaceutical, Food
 - Semiconductor Industry
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Human Life Support Program
 - Mars Rovers
- Medical Diagnostics (e.g. breath analysis)
- Toxic Chemicals, Explosives, and Biological Agents
- Fundamental Science and Photochemistry

http://img.slate.com/media/1/123125/123063/2111846/2121800/050707_ws_SUBWAY_ex.jpg

Fundamentals of Laser Absorption Spectroscopy (LAS)

Beer-Lambert's Law of Linear Absorption

$$I(v)=I_0 e^{-\alpha(v) P_a L}$$

 $\alpha(\nu)$ - absorption coefficient [cm⁻¹ atm⁻¹]; L – path length [cm]

v - frequency [cm⁻¹]; P_a- partial pressure [atm]

C - total number of molecules of absorbing gas/atm/cm 3 [molecule·cm 3 ·atm 1]

S – molecular line intensity [cm · molecule⁻¹] $g(v-v_0) - normalized spectral lineshape function [cm], (Gaussian, Lorentzian, Voigt)$

Methods for Trace Gas Detection

Example: Motivation for NH₃ Detection

- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process gas monitoring & control
- Monitoring of industrial refrigeration facilities
- Spacecraft related gas monitoring
- Pollutant gas monitoring
- Atmospheric chemistry
- Breath diagnostics (kidney & liver dysfunctions)
- Nuclear fusion studies (Tritiated NH₃)

Quantum and Interband Cascade Laser: Basic Facts

- Band-structure engineered devices
 - Grown by MBE or MOCVD
- QCLs operate from 4 -160 μm
 - Quantum well nanostructures
 - Cascading (each electron creates N laser photons and the number of periods N determines laser power)
- Compact, reliable, stable, long lifetime, commercial availability
- Broad spectral tuning range in the mid-IR (4-24 μm for QCLs and 3-5 μm for ICLs)
- High output powers
 - Pulsed peak powers of 1.6 W; high temperature operation ~ 425 K
 - Average power levels: 1-600 mW
 - ~ 50 mW, TEC CW DFB (Alpes Laser, Switzerland)
 - >600 mW (CW FP) and >150 mW (CW DFB) at 298 K (Northwestern University)

Previously Integrated Carbon Monoxide QC-LAS Sensor

- First Rice laser based trace-gas sensor with custom DSP control and processing
- Designed for high speed acquisition, remote monitoring
- Detection limit improved
 - 6ppb in 3 seconds using commercial acquisition equipment
 - 6ppb in 1 second using custom solution

- Quantum Cascade Laser @ 4.6μm wavelength
- 100 meter multipass cell
- 4 mW pulsed optical power @ -30 ℃
- Peltier thermoelectrically cooled
- Pulsed analog front end
- Subthreshold current modulation (wavelength tuning)
- Autonomous control and processing
- High speed signal acquisition and processing

Detection Limit of QC-LAS CO Sensor

Absorption Detection Modules

QEPAS Fiber based Gas Sensor Architecture

home | pay | register | sign out | site map

Buy

Sell

My eBay

Community

Help

Listed in category: Computers & Networking > Networking > Cables, Connectors > Transceivers

JDS U 1550nm 2.5Gb/s DFB Laser Fiber Optic TX Module

JDS UNIPHASE

Bidding has ended for this item

If you are a winner, Sign In for your status.

List an item like this or buy a similar item below.

Larger Picture

Winning bid: Us \$19.95 Low cost lasers for low cost sensors!

Ended: Jan-16-06 12:53:02 PST

Start time: Jan-09-06 12:53:02 PST

History: 1 bid (US \$19.95 starting bid)

Winning bidder:

Item location: Richardson, Texas

United States

Ships to: United States

Shipping costs: US \$10.50 -- Standard Flat Rate Shipping Service

Shipping, payment details and return policy

Multispecies Detection: DFB-A Telecom Laser Arrays

Paramount Pictures

Important Biomedical Target Gases for Breath Analysis

Molecule	Formula	Biological/Pathology Indication
Pentane	CH ₃ (CH ₂) ₃ CH ₃	Lipid peroxidation, oxidative stress associated with inflammatory diseases, transplant rejection, breast and lung cancer
Ethane	C ₂ H ₆	Lipid peroxidation and oxidative stress, lung cancer
CO isotope ratio	1300 / 1200	Marker for Helicobacter pylori infection. Gastrointestinal and

New Israeli mobile phone to detect breast cancer

Dec 09 1:37 PM US/Eastern

An Israeli psychologist has reportedly developed a radical new technology which would enable an ordinary mobile phone to diagnose breast cancer and various type of heart disease.

By installing new software and adding a basic infrared camera, a mobile phone could be transformed into a highly-effective diagnostic tool, offering far more accurate results than the self-checks many women do themselves, the Haaretz daily reported.

Carbon Monoxide	со	Smoking response, CO poisoning, vascular smooth muscle response, platelet aggregation (400-3000 ppb)
Ethylene	H ₂ C=CH ₂	Oxidative stress, cancer
Acetone	CH₃COCH₃	Fasting response, diabetes mellitus response, ketosis

13

GNOMES 3.0 Hardware Architecture

- Dual TI MSP430F169 processors
 - CPU_0
 - Sensing Application
 - Master for Processor-to-Processor Communication
 - CPU_1
 - Communication Software
 - Networking Software
 - Extra Analog Sensing / Processing
 - Individual 32kHz clocks; Shared 8MHz clock
 - 12 bit communication bus between processors
- 2MB off chip data storage per processor
- Serial Port over USB for PC connection
- 802.15.4 support
- User LEDs and Pushbuttons
- 3 expansion interface ports
 - 2 Digital (One per processor)
 - 1 Analog
- Power management done separately

QEPAS Sensor Network Node using GNOMES 3.0

Sensor Network Requirements

- Ultra-low power consumption in nodes
 - Replacing batteries may be impossible
 - Lifetime / Uptime of network depends on application
- Ease of initial deployment
 - Environment may not be conducive to sensor network deployment
 - May need quick deployment on a large area
- Little Maintenance and Self-configuration
 - Nodes must on-line quickly once deployed
 - Network must be tolerant to node failure
- Local low-power information processing
 - Preprocessing of information to reduce communications is key
 - Advances is processor technology / integration makes this possible

Sensor Network != Ad-hoc Network

- Abundance of research in ad-hoc network technologies but sensor networks have unique constraints
- Typical ad-hoc networks can afford sophisticated routing and network topology discovery methods
- Data throughput is an index of performance in ad-hoc networks.
 - Sensor networks typically need only very low data rates eg. toxic gas detection systems may only communicate a few kilobits of data at once
- Due to low data rates, power consumption in sensor networks is receiver-dominated
- Nodes can be stationary in many sensor network applications

Asynchronous Sensor Network (ASN)

- Trade off transmit power, bandwidth and sophisticated routing for low power, easy deployment and simplicity
- Turn nodes off periodically to save power
- Nodes unaware of the sleep/awake cycles of other nodes; eliminates synchronization overhead
- Nodes may be distributed randomly throughout the region of observation
- Multihop network to keep radio transmission range small
- Flooding Protocol: Messages are broadcasted to the entire network; upon receipt of a message, node forwards the message if it is not the intended recipient

Snapshot of an ASN

Dark circles: Sensor Coverage Areas. Dotted Circles: Radio transmission range

Filled dots: Awake nodes Unfilled dots: Asleep nodes

Needs of an ASN

- For detection applications, probability of detection improves with the density of nodes in the network
- Advantages of ASN come at the cost of an increased number of nodes
- Therefore, low cost per node is a must to make ASN an acceptable alternative to more sophisticated networks
- Need a testbed to demonstrate viability; nodes must be low power, low cost, and easily programmable

Summary

- New optical techniques for spectroscopy allow for many novel applications (QEPAS, Laser Arrays)
- Nanotechnology QCL and ICL technology will push detection limits to part-per-trillion in a compact, low power, robust package in the near future (Room Temperature, High Efficiency)
- New field of medicine based on quantitative breath analysis is emerging (Nitric Oxide & Asthma FDA Approval)
- Sensor networks will monitor large areas for environmental (Kyoto Protocol) and security applications (Airport Explosives)

Research Affiliates:

