Mid-Infrared Semiconductor Laser based Trace Gas Sensor Technologies: Recent Advances & Applications

> F. K. Tittel, R. Lewicki, M. Jahjah, Y. Ma, P. Stefanski & J. Tarka Electrical and Computer Engineering Department, http://ecc.rice.edu/lasersci/ L. Gong & R. Griffin Civil and Environmental Engineering Rice University, Houston, TX, USA

- New Laser Based Trace Gas Sensor Technology
 - Novel Multipass Absorption Cell & Electronics
 - Quartz Enhanced Photoacoustic Spectroscopy
- Examples of Mid-Infrared Sensor Architectures
 - C₂H₆, NH₃, NO, CO, and SO₂
 - Future Directions of Laser Based Gas Sensor Technology and Conclusions

rch supported by NSF ERC MIRTHE, NSF-ANR NEXCILAS, the Robert Welch Foundation & Seni

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
- Industrial Plants
- Combustion Sources and Processes (e.g. fire detection)
- · Automobile, Truck, Aircraft and Marine Emissions
- **Rural Emission Measurements**
- Agriculture & Forestry, Livestock
- **Environmental Monitoring**
 - Atmospheric Chemistry (eg measurement of isotopologues)
- Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
- · Crew Health Maintenance & Life Support
- Applications in Medical Diagnostics and the Life Sciences
- Technologies for Law Enforcement, Defense and Security
- **Fundamental Science and Photochemistry**

Laser based Trace Gas Sensing Techniques

- Optimum Molecular Absorbing Transition
 - Overtone or Combination Bands (NIR)
 - Fundamental Absorption Bands (MID-IR)
- Long Optical Pathlength
 - Multipass Absorption Cell (White, Herriot, Chernin)
 - Cavity Enhanced and Cavity Ringdown Spectroscopy
 - Open Path Monitoring (with retro-reflector): Standoff and Remote Detection
 - Fiberoptic Evanescent Wave Spectroscopy
- Spectroscopic Detection Schemes
 - Frequency or Wavelength Modulation
 - Balanced Detection
 - Zero-air Subtraction
 - Photoacoustic & Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)

Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE
Sensitivity (% to ppt)	Optimum Wavelength, Power
Selectivity (Spectral Resolution)	Stable Single Mode Operation and Narrow Linewidth
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Mode Hop-free Wavelength Tunability
Directionality or Cavity Mode Matching	Beam Quality
Rapid Data Acquisition	Fast Time Response
Room Temperature Operation	High wall plug efficiency, no cryogenics or cooling water
Field deployable in harsh	Compact & Robust

Key Characteristics of Mid-IR QCL& ICL Sources - Oct 2012

Band – structure engineered devices
Emission wavelength is determined by layer thickness – MBE or
MOCVD, Type I QCLs operate in the 3 to 24 μm spectral region;
Type II and GaSb based ICLs can cover the 3 to 6 μm spectral range.

Compact, reliable, stable, long lifetime, and commercial availability
 Fabry-Perot (FP), single mode (DFB) and multi-wavelength devices

Wide spectral tuning ranges in the mid-IR

15 cm ¹ using injection current control for DFB devices
10-20 cm ¹ using temperature control for DFB devices
-525 cm ¹/22% of c w) using an external grating element and FP chips with heterogeneous cascade active region design, also QCL DFB Array

Narrow spectral linewidths

High pulsed and CW powers of OCLs at TEC/RT temperatures (MIOMD-11, NWU, Sept. 2012)

- Room temperature pulsed power of > 30 W with 27% wall plug efficiency and CW powers of ~5 W with 21% wall plug efficiency
- > 2W. TEC CW DFB @ 46 um
- > 600 mW (CW FP) @ RT, wall plug efficiency of -17 % at 4.6 μm,

Improvements and New Capabilities of QCLs and ICLs

- Optimum wavelength (> 3 to < 20 μm) and power (>10 mw to < 1 W) at room temperature (> 15 °C and < 30 °C) with state-of-the-art fabrication/processing methods based on MBE and MOCVD, good wall plug efficiency and lifetime (> 20,000 hours) for detection sensitivities from % to ppiv with low electrical power budget
- Stable single TEM₀₀ transverse and axial mode, CW and pulsed operation of mid-infrared laser sources (narrow linewidth of 300 MHz to < 10kHz)
- Mode hop-free ultra-broad wavelength tunability for detection of broad band absorbers and multiple absorption lines based on external cavity or mid-infrared semiconductor arrays
- Good beam quality for directionality and/or cavity mode matching. Implementation of innovative collimation concepts.
- · Rapid data acquisition based on fast time response

L

Compact, robust, readily commercially available and <u>affordable</u> in order to be field deployable in harsh operating environments (temperature, pressure, etc...)

Motivation for NH₃ Detection

- · Monitoring of gas separation processes
- · Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- · Atmospheric chemistry
- Medical diagnostics (kidney & liver diseases)

fill at the said

Motivation for Nitric Oxide Detection

- · Atmospheric Chemistry
- · Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- · Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection
- · Photofragmentation of nitro-based explosives

Motivation for Carbon Monoxide Detection

- Atmospheric Chemistry
 - Incomplete combustion of natural gas, fossil fuel and other carbon containing fuels.
 - Impact on atmospheric chemistry through its reaction with hydroxyl (OH) for troposphere ozone formation and changing the level of greenhouse gases (e.g. CH₄).
- Public Health
 - Extremely dangerous to human life even at a low concentrations. Therefore CO must be carefully monitored at low concentration levels.
- · CO in medicine and biology
 - Hypertension, neurodegenerations, heart failure and inflammation have been linked to abnormality in CO metabolism and function.

Summary and Outlook

- Laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diodes and high performance DFB QCL is a promising analytical approach for real time atmospheric measurements and breath analysis.
- Six infrared semiconductor lasers from Nanoplus, Daylight Solutions, Maxion Technologies (PSI), Hamamatsu, Northwestern University and AdtechOptics were used recently (2011-2012) by means of TDLAS, PAS and QEPAS. Seven target trace gas species were detected with a 1 sec sampling time:
- Seven larget trace gas species were detected with a 1 sec sampling time:

 C_Hg at -3 36 µm with a detection sensitivity of 13 pptv using TDLAs.

 NH₃ at -10.4 µm with a detection sensitivity of -1 pptv (200 sec averaging time);

 NO at -5 26 µm with a detection limit of 3 pptv

 SO₂ at -7.24 µm with a detection limit of 100 pptv

 CO at -4.61 µm with minimum detection limit of 2 pptv

 CO at -4.61 µm with minimum detection limit of 2 pptv

- CH₄ and N₂O at ~7.28 μm <u>currently in progress</u> with detection limits of 20 and 7 ppbv, respectively
- New target analytes such as OCS, CH₂O, HONO, H₂O₂, C₂H₄, C₃H₈, and C₆H₆ Monitoring of broadband absorbers: acetone and UF₆
- Compact, robust sensitive and selective single frequency, mid-infrared sensor technology is capable of performing precise and accurate concentration measurem of trace gases relevant in environmental, biomedical, industrial monitoring and national security

Merits of QEPAS based Trace Gas Detection

- Very small sensing module and sample volume (a few mm³ to -2cm²)
- · Extremely low dissipative losses
- · Optical detector is not required
- Wide dynamic range
- · Frequency and spatial selectivity of acoustic signals
- Rugged transducer quartz monocrystal; can operate in a wide range of pressures and temperatures
- Immune to environmental acoustic noise, sensitivity is limited by the fundamental thermal TF noise: k_BT energy in the TF symmetric mode
- Absence of low-frequency noise: SNR scales as √t, up to t=3 hours as experimentally verified

QEPAS: some challenges

- Cost of Spectrophone assembly
- · Sensitivity scales with laser power
- Effect of H₂O
- Responsivity depends on the speed of sound and molecular energy transfer processes

RICE

Cross sensitivity issues

Future Directions and Outlook

- New target analytes such as OCS, CH₂O, HONO, H₂O₂, C₂H₄, C₃H₈, and C₆H₆
- Ultra-compact, low cost, robust sensors (e.g. C₂H₆, NO, CO.....)
- Monitoring of broadband absorbers: acetone, TATP acetone peroxide, UF₆
- Optical power build-up cavity designs
- · Development of trace gas sensor networks

