

Mid-infrared semiconductor laser based trace gas technologies: recent advances and applications

F. K. Tittel¹, R. Lewicki^{1,4}, M. Jahjah¹, P. Stefanski^{1,4}, J. Tarka^{1,4}, L. Gong², R. Griffin² S. So⁴, D.Thomazy⁴ W. Jiang¹, J. Zhang^{1,6}, P. Lane⁵, R.Talbot⁵

Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA ² Department of Civil and Environmental Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
³ Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw, Poland
⁴ Sentinel Photonics, Monmouth Junction, NJ 08852, USA
⁵ University of Houston, Department of Earth & Atmospheric Sciences, Houston, TX 77204, USA

Northeast Forestry University, Department of Electromechanical Engineering, Harbin, China

ICONO/LAT-3 2013

Moscow,

June 18, 2013

- New Laser Based Trace Gas Sensor Technology
 - Novel Multipass Absorption Cell & Electronics
 - Quartz Enhanced Photoacoustic Spectroscopy
- Examples of Mid-Infrared Sensor Architectures
 - C₂H₆, NH₃, NO, CO, and SO₂
 - Future Directions of Laser Based Gas Sensor Technology and Conclusions

Research support by NSF ERC MIRTHE, NSF-ANR NexCILAS, the Robert Welch Foundation, Scinovation, Inc., Testo AG and Sentinel Photonics Inc. via an EPA Phase 1 SBIR sub-award is acknowledged

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
 - Automobile, Truck, Aircraft and Marine Emissions
- **Rural Emission Measurements**
 - Agriculture & Forestry, Livestock
- Environmental Monitoring
 - Atmospheric Chemistry (e.g isotopologues, climate modeling,...)
 - Volcanic Emissions
- **Chemical Analysis and Industrial Process Control**
 - Petrochemical, Semiconductor, Pharmaceutical, Metals Processing, Food & Beverage Industries; Nuclear Technology & Safeguards
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- **Applications in Medical Diagnostics and the Life Sciences**
- Technologies for Law Enforcement, Defense and Security
- **Fundamental Science and Photochemistry**

"Curiosity" landed on Mars on August 6, 2012

Laser based Trace Gas Sensing Techniques

- Optimum Molecular Absorbing Transition
 - Overtone or Combination Bands (NIR)
 - Fundamental Absorption Bands (Mid-IR)
- Long Optical Pathlength
 - Multipass Absorption Cell (White, Herriot, Chernin, Sentinel Photonics)
 - Cavity Enhanced and Cavity Ringdown Spectroscopy
 - Open Path Monitoring (with retro-reflector): Standoff and Remote Detection
 - Fiberoptic Evanescent Wave Spectroscopy
- Spectroscopic Detection Schemes
 - Frequency or Wavelength Modulation
 - Balanced Detection
 - Zero-air Subtraction
 - Photoacoustic & Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)

Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE		
Sensitivity (% to ppt)	Optimum Wavelength, Power		
Selectivity (Spectral Resolution)	Stable Single Mode Operation and Narrow Linewidth Mode Hop-free Wavelength Tunability		
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers			
Directionality or Cavity Mode Matching	Beam Quality		
Rapid Data Acquisition	Fast Time Response		
Room Temperature Operation	High wall plug efficiency, no cryogenic or cooling water		
Field deployable in harsh environments	Compact & Robust		

Key Characteristics of Mid-IR QCL & ICL Sources – May 2013

Band – structure engineered devices
Emission wavelength is determined by layer thickness – MBE or MOCVD; Type I QCLs operate in the 3 to 24 μm spectral region; Type II and GaSb based ICLs can cover the 3 to 6 μm spectral range.

- Compact, reliable, stable, long lifetime, and commercial availability Fabry-Perot (FP), single mode (DFB) and multi-wavelength devices

Wide spectral tuning ranges in the mid-IR

- 1.5 cm⁻¹ using injection current control for DFB devices
- 10-20 cm⁻¹ using temperature control for DFB devices
- ~100cm-1 using current and temperature control for QCL DFB Array $\sim 525~\rm cm^{-1}(22\%~of~c.w.)$ using an external grating element and FP chips with heterogeneous cascade active region design; also QCL DFB Array

Narrow spectral linewidths

- CW: 0.1 3 MHz & $<\!10kHz$ with frequency stabilization (0.0004 cm $^{\!-1}\!$) Pulsed: -300 MHz

High pulsed and CW powers of QCLs at TEC/RT temperatures

- Room temperature pulsed power of > 30 W with 27% wall plug efficiency and CW powers of ~ 5 W with 21% wall plug efficiency
- > 1W, TEC CW DFB @ 4.6 μm
- > 600 mW (CW FP) @ RT; wall plug efficiency of ~17 % at 4.6 μm;

Motivation for Mid-infrared C₂H₆ Detection

- Atmospheric chemistry and climate
 - Fossil fuel and biofuel consumption,
 - biomass burning,
 - vegetation/soil,
 - natural gas loss
- Oil and gas prospecting
- Application in medical breath analysis (a non-invasive method to identify and monitor different diseases):
 - asthma,
 - schizophremia,
 - Lung cancer,
 - lung cancer,
 - vitamin E deficiency.

HITRAN absorption spectra of C2H6, CH4, and H2O

Motivation for NH₃ Detection

- Atmospheric chemistry
- Pollution gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- · Spacecraft related trace gas monitoring
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Monitoring of gas separation processes
- Medical diagnostics (kidney & liver diseases)
- Detection of ammonium-nitrate explosives

16)

Conventional PAS

Laser beam, power PModulated $(P \text{ or } \lambda)$ at f or f/2 $S \sim \frac{Q \alpha P}{f V}$ NNEA = $\frac{\alpha_{\min} P}{\sqrt{\Delta f}} \left[\frac{\text{cm}^{-1} \times \text{W}}{\sqrt{\text{Hz}}} \right]$ Sensitive microphone

Sporadic increased NH₃ Concentration Levels related to Emissions by the Parish Electric Power Plant, TX The Parish electric power plant is located near the Brazos River in Fort Bend County, Texas (-27 miles SW from downtown Houston)

Instrumentation available at CAMS 75 & TCEQ monitoring site

Species/parameter	Measurement technique			
NH ₃	Daylight Solutions External Cavity Quantum Cascade Laser (Photo-acoustic Spectroscopy)			
со	Thermo Electron Corp. 48C Trace Level CO Analyzer (Gas Filter Correlation)			
SO ₂	Thermo Electron Corp. 43C Trace Level SO ₂ Analyzer (Pulsed Fluorescence)			
NO _x	Thermo Electron Corp. 42C Trace Level $\mathrm{NO-NO_2-NO_N}$ Analyzer (Chemiluminescence)			
NO _y	Thermo Electron Corp. 42C-Y NO _Y Analyzer (Molybdenum Converter)			
HNO ₃	Mist Chamber coupled to Ion Chromatography (Dionex, Model CD20-1)			
HCI	Mist Chamber coupled to Ion Chromatography (Dionex, Model CD20-1)			
VOC _a	IONICON Analytik Proton Transfer Reaction Mass Spectrometer and TCEQ Automated Gas Chromatograph			
PBL height	Vaisala Ceilometer CL31 with updated firmware to work with Vaisala Boundary Layer View software			
Temperature	Campbell Scientific HMP45C Platinum Resistance Thermometer			
Wind speed	Campbell Scientific 05103 R. M. Young Wind Monitor			
Wind direction	Campbell Scientific 05103 R. M. Young Wind Monitor			

NH₃ source attribution & temperature variations

- Emission events from specified point sources (i.e., industrial facilities)
- Estimated NH₃ emissions from cows (1.3 tons/day)
- Estimated NH₃ emissions from soil and vegetation (0.15 tons/day)
- EPA PMF (biogenic: 74.1%; light duty vehicles: 12.1%; natural gas/industry: 9.4%; and heavy duty vehicles: 4.4%)
- Livestock might account for approximately 66.4% of total NH₃ emissions
- Increased contribution from industry (→ 18.9%)

Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection
- Photofragmentation of nitro-based explosives

Motivation for Carbon Monoxide Detection

- Atmospheric Chemistry
 - Incomplete combustion of natural gas, fossil fuel and other carbon containing fuels.
 - Major global pollutant. Impact on atmospheric chemistry through its reaction with hydroxyl (OH) for troposphere ozone formation and changing the level of greenhouse gases (e.g. CH₄).
- Public Health
 - Extremely dangerous to human life even at a low concentrations. Therefore CO must be carefully monitored at low concentration levels.
- CO in medicine and biology
 - Hypertension, neurodegenerations, heart failure and inflammation have been linked to abnormality in CO metabolism.

Near-IR Laser Diode & Mid-IR QCL based QEPAS Performance for 17 Trace Gas Species (June 2013)

Molecule (Host)	Frequency, cm ⁻¹	Pressure, Torr	NNEA. cm ⁻¹ W/Hz ⁺¹	Power. mW	NEC (t=1s)
H ₂ O (N ₂)**	7306.75	60	1.9×10°	9.5	0.09
HCN (air: 50% RH)*	6539.11	60	4.6×10°	50	0.16
C2H2 (N2)*	6523.88	720	4.1×10°	57	0.03
NH ₃ (N ₂)*	6528.76	575	3.1×10**	60	0.06
C2H4 (N2)*	6177.07	715	5.4×10°	15	1.7
CH4(N2+1.2% H2O)*	6057.09	760	3.7×10°	16	0.24
CO2 (breath ~50% RH)	6361.25	150	\$.2×10°	45	40
H ₂ S (N ₂)*	6357.63	780	5.6×10*	45	5
HCl (N2 dry)	5739.26	760	5.2×10**	15	0.7
CO2 (N2-1.5% H2O) "	4991.26	50	1.4 - 10 - 2	4.4	18
CH2O (N2:75% RH)*	2804_90	75	\$.7×10*	7.2	0.12
CO (N2 +2.2% H2O)*	2176.28	100	1.4×10	71	0.002
NO (N2+H2O)	1900.07	250	7.5×10°	100	0.003
C2H6OH (N2)**	1934.2	770	2.2×10°	10	90
SO2 (N2 +2.4% H2O)	1380.94	100	2.0×10	40	0.1
N ₂ O (air)	1275.492	230	5.3×10 ⁻³	100	0.03
CH ₄ (air)	1275.386	230	1.7×10	100	0.118
C2HF 4 (N2)***	1208.62	770	7.8×10°F	6.6	0.009
NH ₃ (N ₂)*	1046.39	110	1.6×10°2	20	0.006

"Improved microresonator, ""Improved microresonator and double optical pass through ADM: """ With amplitude modulation and metal microresonator

NNEA - normalized noise equivalent absorption coefficient. NEC - noise equivalent concentration for available laser power and THIs time constant, 18 dB oct filter slope

Merits of QEPAS based Trace Gas Detection

- Very small sensing module and sample volume (a few mm³ to ~2cm²)
- Extremely low dissipative losses
- Optical detector is not required
- Wide dynamic range
- Frequency and spatial selectivity of acoustic signals
- Rugged transducer quartz monocrystal; can operate in a wide range of pressures and temperatures
- Immune to environmental acoustic noise, sensitivity is limited by the fundamental thermal TF noise: k_BT energy in the TF symmetric mode
- Absence of low-frequency noise: SNR scales as \sqrt{t} , up to t=3 hours as experimentally verified

QEPAS: some challenges

- Cost of Spectrophone assembly
- Sensitivity scales with laser power
- Effect of H₂O
- Responsivity depends on the speed of sound and molecular energy transfer processes
- Cross sensitivity issues

RICE

Potential Integration of a CW DFB- QCL and QEPAS Absorption Detection Module

Future Directions and Outlook

- New target analytes such as carbonyl sulfide (OCS), formaldehyde (CH₂O), nitrous acid (HNO₂), hydrogen peroxide (H₂O₂), ethylene (C₂H₄), ozone (O₃), nitrate (NO₃), propane (C₃H₈), and benzene (C₆H₆)
- Ultra-compact, low cost, robust sensors (e.g. C₂H₆, NO, CO.....)
- Monitoring of broadband absorbers: acetone (C₃H₆O), acetone peroxide (TATP), UF₆.....
- Optical power build-up cavity designs
- Development of trace gas sensor networks

Summary

- Laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diodes and high performance DFB QCL is a promising analytical approach for real time atmospheric measurements and breath analysis.
- Six infrared semiconductor lasers from Nanoplus, Daylight Solutions, Maxion Technologies (PSI), Hamamatsu, Northwestern University and AdtechOptics were used recently (2011-2012) by means of TDLAS, PAS and QEPAS
- Seven target trace gas species were detected with a 1 sec sampling time:
 - C_2H_6 at ~ 3.36 µm with a detection sensitivity of 130 pptv using TDLAS
 - NH₃ at $\sim 10.4 \, \mu \text{m}$ with a detection sensitivity of $\sim 1 \, \text{ppbv}$ (200 sec averaging time);
 - NO at ~5.26μm with a detection limit of 3 ppbv
 - CO at $\sim 4.61 \mu m$ with minimum detection limit of 2.5 ppbv
 - SO₂ at ~7.24μm with a detection limit of 100 ppbv
 - = CH_4 and N_2O at ~7.28 μm <u>currently in progress</u> with detection limits of 20 and 7 ppbv, respectively.
- New target analytes such as OCS, CH₂O, HONO, H₂O₂, C₂H₄,
- Monitoring of broadband absorbers such as acetone, C₃H₈, C₆H₆ and UF₆
- Compact, robust sensitive and selective single frequency, mid-infrared sensor technology that is capable of performing precise, accurate and autonomous concentration measurements of trace gases relevant in environmental, biomedical, industrial monitoring and national security.

