

Wide Range of Trace Gas Sensing Applications **Urban and Industrial Emission Measurements** Industrial Plants Combustion Sources and Processes (e.g. fire detection) Automobile, Truck, Aircraft and Marine Emissions **Rural Emission Measurements** Agriculture & Forestry, Livestock **Environmental Monitoring** Atmospheric Chemistry Volcanic Emissions Chemical Analysis and Industrial Process Control Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries Spacecraft and Planetary Surface Monitoring Crew Health Maintenance & Life Support Applications in Biomedical and the Life Sciences Technologies for Law Enforcement and National Security

Fundamental Science and Photochemistry

Other spectroscopic methods

- Faraday rotation spectroscopy (limited to some paramagnetic species)
- Noise Immune Cavity Enhanced-Optical HeterodyneMolecular Spectroscopy (NICE-OHMS)
- Frequency Comb Spectroscopy from Mid-IR to VUV
- Laser Induced Breakdown Spectroscopy (LIBS)

d-IR Source Requireme	ents for Laser Spectros		
REQUIREMENTS	IR LASER SOURCE		
Sensitivity (% to ppt)	Optimum Wavelength, Power		
Selectivity (Spectral Resolution)	Stable Single Mode Operation and Narrow Linewidth		
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Mode Hop-free Wavelength Tunability		
Directionality or Cavity Mode Matching	Beam Quality		
Rapid Data Acquisition	Fast Time Response		
Room Temperature Operation	High wall plug efficiency, no cryogenics or cooling water		
Field deployable in harsh environments	Compact & Robust		

	Band - structure engineered devices	William Street
	Emission wavelength is determined by layer thickness – MBE or MOCVD; Type I OCLs operate in the 3 to 24 µm spectral region:	10 11
	MOCVD; Type I QCLs operate in the 3 to 24 µm spectral region; Type II and GaSb based ICLs can cover the 3 to 4 µm spectral range.	9111144
	 Compact, reliable, stable, long lifetime, and commercial availability Fabry-Perot (FP), single mode (DFB) and multi-wavelength devices 	unin
	Wide spectral tuning ranges in the mid-IR	Charles and the same of the sa
	 1.5 cm⁻¹ using injection current control for DFB devices 	4 mm
	 10-20 cm⁻¹ using temperature control for DFB devices > 430 cm⁻¹ using an external grating element and FP chips with heterogeneous cascade active region design; also QCL DFB Array 	D Padecides of all Aces Physical TS, path 5 1989;
•	Narrow spectral linewidths	A STATE OF THE PARTY OF THE PAR
	$^{\circ}$ CW 0.1 - 3 MHz & <10kHz with frequency stabilization (0.0004 cm 4). Pulsed: -300 MHz	
•	High pulsed and cw powers of OCLs at TEC/RT temperatures	
	 Room temperature pulsed and CW powers of > 30 W and 3 W respectively 	
	 >280 mW, TEC CW DFB @ 5 μm 	45 nm
	 > 600 mW (CW FP) @ RT, wall plug efficiency of ~17 % at 4.6 μm, 	

Quantum Cascade, Interband Cascade and GaSb Laser Commercial and Research Activity in Sept. 2011 *Commercial Sources * Adbeek, CA * Alpes Lasers, Switzerland & Germany * Aicatel-Thales, France Cascade Technologies, UK * Corning, NY * Harmannstu, Japan * Maxion Technologies, Inc MD (Physical Sciences, Inc) * Nanoplus, Germany, Siemens, Goeteborg, Sweden, and INP, Greifswald, Germany * Pranalytica, CA * Research Groups * Harvard University * Fraunhofer-IAF & IPM, Freiburg; and Humboldt University, Berlin, Germany * Institute of Electron Technology, Warsaw, Poland * NASA-IPL, Pasadena, CA * Naval Research Laboratories, Washington, DC Northwestern University, Evanston, IL * Princeton University (MIRTHE), NJ * Shanghai Institute of Micropystem and Information Technology, China * Sheffield University (PonetiQ, Malvem and Lancaster, University, UK * State University of Montpelier, France * Technical University of Montpelier, France * Technical University Vienna, Austria and NRC. Ottawa, Canade

Motivation for NH₃ Detection

- · Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- · Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver diseases)

Merits of QEPAS based Trace Gas Detection

- Very small sensing module and sample volume (a few mm³ to -2cm²)
- Extremely low dissipative losses
- · Optical detector is not required
- Wide dynamic range
- Frequency and spatial selectivity of acoustic signals
- Rugged transducer quartz monocrystal; can operate in a wide range of pressures and temperatures
- Immune to environmental acoustic noise, sensitivity is limited by the fundamental thermal TF noise: k_BT energy in the TF symmetric mode
- Absence of low-frequency noise: SNR scales as \(\sqrt{t}\), up to t=3 hours as experimentally verified

QEPAS: some challenges

- Cost of Spectrophone assembly
- · Sensitivity scales with laser power
- Effect of H₂O
- Responsivity depends on the speed of sound and molecular energy transfer processes
- Cross sensitivity issues

Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- · Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection
- Photofragmentation of nitro-based explosives (TNT)

Molecule (Hest)	Frequency,	Pressure, Torr	NNEA,	Power, seW	NEC (= 10).
R10 647 ++	7304.73	- 60	1.9+10	9.5	8.00
16CN (nbr: 50% RH)*	45H11	80	46-18	30	8.16
Call (Na*	4523.60	739	41=10"	.57	# 63
261,063*	6328 Pri	595	23-10	20s	0.06
Chron.	6177.67	725	34:18"	15	1.7
CH. (Ny+1.3% H ₂ O)*	9077.09	560	3.7=18	16	1934
CO ₂ (brends -id= RH)	6361 23	150	8 2-16	45	48
H-2 047.	6357.63	790	3.6×18*	45	- 3
HCI(N) dry)	5739-36	760	5.2=10°	13	87
CO164+13% H3O)*	4991 26	50	1 4-10	44	18
CH (O (N) 75% RH)*	1864 90 T	73	6 T-10"	72	0.12
CO (N2+2.2% H2O)*	2176 28	100	1.4-10	71	8-002
NO (Nesteo)	1900 87	250	7.5=10	100	8 003
C'H'OH WIT.	1934.2	770	22=18	10	90
50, (N; +2.4% H;O)*	1380.94	100	20=10*	40	0.1
N ₂ O (air)	1275 492	230	53-16"	100	0.03
CH _e (air)	1275.386	230	17-10	100	0116
CHE OU	1206 62	770	72-10	66	8 009
NH ON	1846.39	110	10-10	20	8 000

QCL bas	ed OEPAS	Performance	for 7	Trace Gas	Species	(Sept.	2011)

Molecule (carrier gas)	Frequency cm ⁻¹	Pressure Torr	NNEA cm ¹W/Hz*	QCL Power mW	NEC (T=1s)
CH ₁ O (N ₁ :75% RH)*	2804,90	75	8.7×10 ⁻⁹	7.2	120
CO (N ₂ + 2.2% H ₂ O)*	2176.28	100	1.57×10 ⁻³	71	2
CO (propylene)	2196,66	50	7.4×10	6.5	140
N2O (air+5%SF ₆)	2195.63	50	1.5×10 ⁻⁸	19	7
N ₂ O (N ₂ +2.37%H ₂ O)	2201.75	200	2,9×10*	70	2.5
NO (N ₂ +H ₂ O)	1900.07	250	7.5×10 ⁻⁹	100	3.6
C ₁ H ₅ OH (N ₂)**	1934.2	770	2.2×10 ⁻⁷	10	9x10*
C2HF5 (N2)***	1208.62	770	7.8×10	6,6	9
NH ₃ (N ₂)*	1046.39	110	1.6×10 ⁻⁸	20	6

NNEA - mornitude noise equivalent absorption coefficient
NEC - noise equivalent concentration for available laser power and t=1s time constant, 18 dB/oct filter slope

For comparison: conventional PAS 2.2 (2.6)=10 ° cm 'W/NHz (1,800, 10,300 Hz) for NH₂*.(**)
*M. R. Walser et al. Appl. Opt. 42, 2115-2126 (2002): ** | 3. Physin et al. SAE but NNS 3007-01-1431.

Summary and Outlook

- Laser spectroscopy with a mid-infrared, room temperature, continuous wave, high performance DFB QCL is a promising analytical approach for real time atmospheric measurements and breath analysis.

 A 3.36 µm (2976.8 cm²) CW TEC TO3 packaged diode laser based TDLS sensor system achieved a 1 o C₂H₆ detection sensitivity of 130 pptv.

- achieved a 16 C₃R₃ detection sensitivity of 150 pptv.

 A 10.4 µm (96/1.5 cm²) Daylight ECL-QCL based PAS sensor obtained a 1 o NH₃ detection sensitivity of 3 pptv.

 A 5.26 µm (1900 cm²) and 7.24 µm (1380.94 cm²) CW TEC HHL packaged DFB-QCL based QEPAS sensor for NO and SO₂ detection was demonstrated.

 For an interference free NO absorption line located at 1900.08 cm² a 1 o minimum NO detection limit of 3 pptv was achieved at a gas pressure of 240 Torr and a sampling time of 1 sec.
- sampting time of 1 sec.

 A 1 o minimum detection limit of 100 ppbv was achieved at a gas pressure of 100 Torr and a sampling time of 1 sec for a SO₂ absorption line at 1380.94 cm⁻¹.

 A 4.61 µm (2169.94 cm⁻¹) CW TEC DFB-QCL based CO sensor employing QEPAS technique was developed. For R₆ CO absorption line located at 2169.2 cm⁻¹ a 10 minimum detection limit of 2 ppbv was obtained at atmospheric pressure and 1 sec. sampling time.

 Compact pobult positive and calculation should fine a COMPact of the compact pobult positive and calculation should fine a COMPact of the compact pobult positive and calculation should fine a COMPact of the compact pobult positive and calculation should fine at 1 sec.
- Compact, robust sensitive and selective single frequency QCL sensor technology based on TDLAS, PAS and QEPAS is capable of performing real-time environmental, biomedical, industrial monitoring and national security measurements.

Summary of Mid-IR Laser based Gas Sensor Technologies

- Infrared Semiconductor Laser based Trace Gas Sensors
 - Compact, tunable, and robust
 - High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)
 - Capable of fast data acquisition and analysis
 - Detected 16 trace gases to date with near and mid infrared semiconductor laser based QEPAS: NH₁, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, C₂H₆, H₂S, H₂CO, SO₂, C₃H₃OH, C₂HF₅, TATP and several isotopic species of C, O, N and H.
- Selected Applications of QCL based Trace Gas Detection
 - Medical non-invasive diagnostics: MDC of single digit ppb levels (1σ) for NH₃ at 967.35 cm⁻¹ and NO at 1900 cm⁻¹
 - Environmental Monitoring of Atmospheric NH₃ in Texas 2010 & 2011: ~ 1 to 28 ppb in urban areas; remote detection (~27 m)
- **Future Directions and Outlook**
 - Ultra-compact, low cost, robust sensors (CO, CO₂ and C₂H₆)
 - New target analytes (SO₂, C₆H₆, and UF₆)
 - · Development of trace gas sensor networks

Improvements and New Capabilities of QCLs and ICLs

- Optimum wavelength (>3 to $<20~\mu m)$ and power (>10~mw to <1~W) at room temperature (> 15 °C and <30 °C) with state-of-the-art fabrication/processing methods based on MBE and MOCVD, good wall plug efficiency and lifetime (> 10,000 hours) for detection sensitivities from % to pptV with relevant electrical power budget depending on appropriate sensor technique
- Stable single TEM $_{00}$ transverse and axial mode, CW and pulsed operation of mid-infrared laser sources (narrow linewidth of ~ 300 MHz to < 10 kHz)
- Mode hop-free wavelength tunability for detection of broad band absorbers and multiple absorption lines based on external cavity or mid-infrared semiconductor arrays
- Good beam quality for directionality and/or cavity mode matching. Implementation of potential plasmonic and innovative flat lens collimation concepts.
- Rapid Data Acquisition based on fast time response
- Compact, robust, readily commercially available and affordable in order to be field deployable in harsh operating environments (temperature, pressure, etc...)

