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Abstract

Longitudinal electron beam pumping of excimer lasers in a head—on configuration was investigated.
Laser experiments on the B->X and C-)>A tramsition of XeF, as well as experiments with Xe2C1 and XezBr are
described.

Introduction

One of the most important technical problems in the development of high-energy electron beam pumped
excimer lasers is the achievement of good coupling between the electron beam and the laser medium. Large
mode volumes, and uniform and efficient emergy deposition are needed in order to obtain high output
powers. Transverse and radial excitation [1,2], provide efficient and uniform excitation, However,
because of impedance effects associated with the field-emission diode, it is not practical to utilize a
long cathode, and still maintain the fast rise—time necessary for excimer formation, Thus the size of
the volume of the laser is 1imited when such excitation is used,

A longitudinal pumping scheme, where the electron-beam is injected along the direction of the optic
axis, permits interaction with the laser medium over a considerable distance, and the deposition of a
large fraction of the pump energy. However, this approach requires the use of & a magnetic field for
beam confinement and focusing [3-5]. In this paper, we wish to describe a simple head-on longitudinal
pumping design, which offers certain advantages over two altermative longitudinal pumping methods: a
lambda geometry which requires bending of the electron beam into correct aligmment [4,5] and an annular
scheme that depends on carefully designed magnetic field profiles [6]., The only problem encountered in
this head-on design is the presence of & laser reflector which must withstand the electron beam pump
pulses,

The experimental arrangement, shown in Fig, 1, consists a conventional electron beam machine (Phy-
sics International Pulserad 110) with a 30 cm long reaction cell attached to front of the field emission
diode. After entering the reaction cell through a 50 pm thick titanium anode foil, the e-beam pulse (1
MeV, 15 kA, 10 ns FWHF) passes directly through the first mirror of the laser optical cavity. A similar
system has been described earlier [7,8] The mirror is made from a 0.,3mm thick Cervit plate, which has
been appropriately ground (5 m radius of carvature) and coated with a dieletric reflector (>99%). A spe-
cial hard Si0, outer coating is applied to the dielectric stack to protect it from attack by the halogens
ijn the reactfon cell, Measurements indicate that only about 5% of the e—beam energy is lost when it
passes through the Cervit mirror. Two solenoids, ome placed around the diode and another around the reac—
tion cell provide a pulsed magnetic field which confimes the electron beam and keeps it from spreading
while is passes through the cell, The two coils are designed to provide a uniform field along the entire
path of the beam, thus eliminating field inhomogenities which may lead to losses. A Helmholtz pair at the
far end of the cell diverts the beam away from the Brewster window.

The laser cavity comsists of the Cervit plate inside the cell, and am external output coupler
mounted in front of the Brewster window, External alignment screws permit adjustment of the intermally
mounted mirror. The internal mirror showed no measurable decrease in reflectivity for up to 30 shots.
However, it must be mounted carefully as there is a shock wave associated with the e—beam pulse which can
crack the Cervit unless it is mounted with sufficient freedom to move slightly,
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Fig, 1 Schematic of the head-on longitudinal electron beampumped reaction cell,

Temporal characteristics of the fluorescence and laser emission from the cell are observed witn a
fast vacuum photodiode, conmnected to a Tektronix 7912 transient digitizer., Spectral data is obtained
with an optical multichannel analyzer (OMA I). All of the instrumentation is connected to a PDP 11/23
minicomputer for data manipulation and recording.
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Fig. 2, a) Output power of XeF(B-)>X) laser as a b) Variation of XeF(C->A) laser power with
function of xenon pressure for a mixture xenon pressure with the same gas mixture
of 10 torr NF3 and 4 atm argon, as for (a).

A variety of experiments with different rare gas—halides were performed in order to evaluate this
head-on longitudinal pumping scheme., XeF, on both the narrowband B->X and wideband C->A tramsitions, as
well as the trimers Xe,Cl and Xe,Br were studied, Figure 2 depicts the variation of XeF B->X and C-)A
emission as & function of Xe pressure in a mixture of 4 atm argon, 10 Torr NF,, and xenon., Increasing Xe
pressure increases the formation of the dimer XeF, and initially increases the emission at both the B->X
and C->A wavelengths, However, as the B-)>X intensity grows, it becomes super—fluorescent, causing a
decrease in the C-)>A intensity., In figure 3a), the XeF B->X and C->A fluorescence are shown, along with
C->A laser emission when a mirror with 98% reflectivity from 475 to 525 mm is inserted into the laser
cell, Under lasing conditions, the spectrum narrows substantially, along with a factor of 20 increase in
output intensity. In the absence of mirrors, the B->X emission becomes super—fluorescent, and exceeds
the C-)>A emission, as shown in Fig. 3b),
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ements indicate an 80% decrease in the electron

states is depicted in Fig. 4. For

Argon quench-

the argon buffer gas pressure is increased from 0.5 atm to 4

atm. The temporal characteristics for the XeF(B) and XeF(C) fluorescence and laser emission are shown in
Fig. 6, The maximum of XeF(B) emission occurs first, indicating direct production of the B-state. The
C-state is somewhat delayed since its population results mainly via collisions from the B-state. The
maximum of the XeF(C) laser occurs ~ 40 ns after the B-)>X ilaser pulse due to the long cavity bumild-up
time of this low gain tramsition,
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Fig, 6, Normalized temporal characteristics of XeF(B) and XeF(C) emission without resonator (a) and with

resonator (b),

In an effort to reduce the stimulated emission of the B-)>X tranmsition, we tried to introduce a UV
absorbing gas into the rare gas-halide mixture., Figure 7 shows the fluorescence spectra, with a mixture
of 2 atm Ar, 5 torr Xe, 10 torr NF,, and 15 torr of BF,. BF, has a very strong absorption in the UV, and
its effect on the B-)X emission is evident, Unfortunately,” quenching of both the B and C states of XeF
by BF, is strong., This can be seen in Figure 8, which is a plot of the normalized C->A and B->X intemsity
as a function of BF, partial pressure, The addition of BF, severly inhibits the B->X XeF emission, witn
almost complete removal at pressures greater tham 4 Torr. “However, the C-)>A emission is also quenched,
but not ss severely. There is still some C->A emission with up to 15 Torr of BF3 in the gas mixture. How-
ever, the quenching of the C state is quite strong, and no lasing of XeF C->A was achieved with gas mix-

tures containing BF3.
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Fig, 7. XeF fluorescence spectrum for a mixture of 4 atm Ar, 5 Torr Xe, 10 Torr of NF3 and 15 Torr of

BF3 .
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Fig. 8. Normalized B->X and C->A fluorescence emission as a function of BF3 partial pressure,

Studies were also made of some triatomic excimers im this head—on longitudinal pumping configura-
tion., The trimer. Xe,Cl [9] was one of those which was investigated. Figure 9 depicts some of the operat-—
ing paramters for this laser. The variation in relative output power has a function of the magmnetic
field used for confinement of the electron beam is shown in Fig. Ya. A magnetic field of about 5 kilo-
gauss with 3 atm Ar pressure resulted in optimum Xe,Cl* emission. Other paramters such as gas composi—
tion and the addition of mnitrogenm to reduce trans?ent absorbers [10] were optimized at about the same
values as determined in transverse electron beam pumping experiments. However, Xe,Cl* output power was
not significantly jncreased in such a longitudinal cell as compared to a tramsverse cell, Studies were
also made with the triatomic excimer XezBr [11], but no evidence of laser action could be observed.

In summary, a new head-on electron beam pumping scheme has been described which permits convenient
longitudinal excitation of excimer laser mixtures. Significant output powers magawatt on both the B->X
and C—A transitions of XeF were observed, The primary factor limiting further improvement in the broad-
band blue—green C->A emission is competition from the B->X transition which becomes super—fluorescent
under intense excitation conditionms. The addition of BF, to the jaser mixture to act as a selective o
absorber proved unsuccessful due to the stromg quenching %ehavior of that molecule.
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