

Laser Based Absorption Sensors for Trace Gas Monitoring in a Spacecraft Environment

Frank K. Tittel and Robert F. Curl

Rice University Houston, USA

fkt@rice.edu http://www.ruf.rice.edu/~lasersci/

- Motivation and Background
- Implementation of Diode Laser based Sensors
- Selected Applications of Trace Gas Detection
- Outlook and Summary

Overall Research Aims

- Development of compact fibered diode laser based gas sensors.
- Applications of sensors to trace gas detection relevant to AEMC program goals and requirements.
- Demonstration of implementation of multiple use applications of new laser based gas sensor technologies.

Wide Range of Gas Sensor Applications

- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources
 - Automobile and Trucks
- Rural Emission Measurements
 - Agriculture
- Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Semiconductor Industry
- Medical Applications
- Law Enforcement

Spectral Coverage by Diode/QC Lasers

Current Research Support

- NASA
- Texas Advanced Technology Program
- EPA
- National Science Foundation
- The Robert Welch Foundation

Current Research Collaborations

- TDA, Inc.Wheat Ridge,CO
- NCAR, NRL, Lucent Technologies
- Rice Environmental Science Department
- Tokai University

R&D Goals for 1999

- Development of 3 DFG Based Gas Sensor Architectures:
 - Single trace gas target species
 - Multigas species
 - Ultrasensitive trace gas detection.
- H₂CO Concentration Measurements in Trace Contaminant Control System at TDA, Inc.
- H₂CO Detection in Ambient Urban Air
- Trace Gas Detection Using QC-DFB Lasers

Schematic of DFG multi-component gas sensor

Widely tunable DFG based gas sensor Rice Laser Science Group April 2000

H₂CO Concentration in NASA TCCS System

DFG Spectroscopic Source at 3.53 µm

9 Day H₂CO Detection at 3.53 μm in Houston

Trace Gas Detection with a Multipass Cell

Absorption Spectrum of Room Air

Problems Encountered

- Mechanical Design Concepts
- Electrical Design Concepts
- Thermal and Power Management
- Delivery Delay of Critical Laser Based Gas Sensor Components
- Commercialization Issues

Future Work I

Near Term Goals (2000)

- Near-IR laser based NH₃ monitoring of bioreactor system at NASA-JSC
- Evaluation of laser based NH₃ monitoring in silicon wafer processing and combustion environments.
- Advanced prototype development of a DFG based mid-IR gas sensor.
- Development of a compact pulsed QC-DFB laser based gas sensor.
- Formaldehyde field campaign in the Greater Houston area.
- Volcanic gas emissions field campaign at Masaya Volcano, Managua, Nicaragua, conducted jointly with U.K. and NI teams.

Future Work II

Near Term Goals (2001)

- Further development of compact QC-DFB and other mid-IR diode laser based gas sensors.
- Continuation of NH₃ monitoring application with mid-IR DFG and QC-DFB laser based gas sensors.
- CH₄ and N₂O emission studies of Rice-based agro-ecosystems.
- Airborne H₂CO and CH₄ concentration measurements conducted jointly with NCAR and NOAA.

