

OUTLINE

PNNL
LPAS Team
Meeting

Laguna Beach June 12, 2006

LPAS Based Gas Sensor Development at Rice: January 2005 – May 2006

F.K. Tittel, Yu. Bakhirkin, R.F Curl, A.A. Kosterev, R. Lewicki, S. So, G. Wysocki

Rice Quantum Institute, Rice University, Houston, TX

http://www.ece.rice.edu/lasersci/

- Phase I Motivation: Optimization of LPAS based near-IR gas sensor technology
 - Target Gas: HCN (blood agent)
- Phase II Motivation: Optimization of LPAS based mid-IR gas sensor technology for broadband absorbers
 - Implementation of MOVPE based 8.6 μm QC Laser technology
 - Target Gas: Freon 125 (simulant of a CWA)
- Summary and Future Phase II Research Directions

Simulated NIR absorption band of HCN centered at 1.53 µm

LPAS based gas sensor architecture

1.53 µm LPAS signal of a 6.25 ppmv HCN: air mixture

Estimated HCN toxicity concentration for 30 minutes exposure is 100 mg/m³ or ~85 ppmv

Laser power in the cell: 50 mW Time constant: 1s, SNR=40

Room air, 50% RH (see plot):

Optimum pressure 60 Torr

NNEA=4.3×10⁻⁹ cm⁻¹W/(Hz)^{1/2}; NEC=155 ppbv

Dry nitrogen or air:

Optimum pressure 300 Torr

NNEA=9.2×10⁻⁹ cm⁻¹W/(Hz)^{1/2}; NEC=330 ppbv

Generation of controlled H₂O concentrations in HCN gas flow

FC1,2 – mass flow controllers, FC – fiber collimator to couple the diode laser radiation at 1.37 mm into the optical gas cell, PD – photodiode

LPAS HCN signal dependence on gas humidity

Addition of H₂O promotes V-T relaxation, resulting in a higher HCN detection sensitivity in humid air.

If the sensor is operated at 300 Torr, RH variations from 6% to 100% only change signal by 10%.

LPAS based performance for 8 trace gas species (June'06)

Molecule (Host)	Frequency, cm ⁻¹	Pressure, Torr	NNEA, cm ⁻¹ W/Hz ^{1/2}	Power, mW	NEC (τ=1s), ppmv
$H_2O(N_2)**$	7306.75	60	1.9×10 ⁻⁹	9.5	0.09
HCN (air: 50% hum) *	6539.11	60	< 4.3×10 ⁻⁹	50	0.16
$C_2H_2(N_2)^{**}$	6529.17	75	~2.5×10 ⁻⁹	~40	0.06
NH ₃ (N ₂)*	6528.76	60	5.4×10 ⁻⁹	38	0.50
CO ₂ (exhaled air)	6514.25	90	1.0×10 ⁻⁸	5.2	890
CO ₂ (N ₂ + 1.5% H ₂ O) *	4991.26	50	1.4×10 ⁻⁸	4.5	18
CH ₂ O (N ₂) & *N ₂ :H ₂ O *	2832.48	100	1.1×10 ⁻⁸	4.6	0.28
CO (N ₂)	2196.66	50	5.3×10 ⁻⁷	13	0.5
CO (propylene)	2196.66	50	7.4×10 ⁻⁸	6.5	0.14
N ₂ O (air+5%SF ₆)	2195.63	50	1.5×10 ⁻⁸	19	0.007

^{* -} Improved microresonator

NNEA – normalized noise equivalent absorption coefficient.

NEC – noise equivalent concentration for available laser power and τ =1s time constant.

QEPAS sensitivity matches the sensitivity of conventional PAS

^{** -} Improved microresonator and double optical pass through QTF

Year 2 Tasks – PNNL Contract # 14813

- Preparation and characterization of broadband high power (~ 100 mW at 360 K), TE coolable Agilent Technologies-Harvard 8.6 μm FP QCL for water background characterization:
 - Acquisition of MOVPE grown cw TEC FP QC laser bars and associated inspection and processing
 - Design and construction of submount and hermetic QCL housing
 - Evaluate output power characteristics at different temperatures and drive currents as well as evaluate output spectrum
- Freon concentration measurements at various conditions: pressure and humidity
 - Selection of optimum broadband target gas for characterized 8.6 μm FP QCL: Freon 125
 - Design and construction of Freon gas handling system
 - Implementation of amplitude modulation mode of operation for 8.6 μm FP QCL
 - Optimum quartz resonator illumination geometry for AM-1f MIR QTF LPAS mode
 - Perform detailed investigations of the influence of gas pressure, temperature and humidity on QCL based QTF LPAS sensor performance
 - H₂O background and H₂O influence on LPAS Signal-to-Noise Ratio
- Acquisition of a broadband 10 µm FP QCL for optimum DIMP quantification (centered at 1100 cm⁻¹)
 - Acquisition of MBE grown cw TEC FP heterogeneous QC laser bar with 2 active regions centered at 8.4 and 9.6 μm
 - Characterization of 10 μm FP QCL at different temperatures
 - Repeat H₂O background characterization measurements for DIMP

Performance characteristics of a high power cw 8.6 µm QCL grown by MOVPE

Measured FTIR spectra of cw 8.6 µm QCL at 340 & 500mA

Measured by G. Wysocki & R. Maulini at UNINE, Neuchatel, Switzerland; March 2006

Spectral comparison of Freon 125 with emission coverage from a 8.6 µm FP QCL based on PNNL database

Design of QCL housing and lens positioning assembly

QCL housing and positioning assembly

Amplitude Modulated 8.6 µm QCL based LPAS Sensor Platform

Design of a new QTF based absorption detection module

- •Compact & integrated design
- •Laser-induced background deduction
- •Machining precision of : +/- 10μm

- •Two QTFs connected in parallel results in enhanced $\sqrt{2}$ SNR
- •Minimum exposure of QTFs to QCL radiation
- •Efficient for gas flow to microresonator

Current Status and Year 2 Research Directions

QTF LPAS based Gas Sensors

- Significant reduction in sensor size and weight is possible with LPAS
- LPAS is immune to ambient acoustic noise. The measured noise level coincides with the thermal noise of the QTF. The sensitivity is limited by thermal excitation of the symmetric mode.
- Demonstrated minimum normalized detectable absorption coefficient is $4.3 \times 10^{-9} \, \text{cm}^{-1}$ W/ $\sqrt{\text{Hz}}$ (one pass configuration)

Year 2 (2006) Research Directions

- Implementation of Freon 125 (C_2HF_5) concentration measurements at 8.6 μ m
- Freon 125 sensor performance evaluation as a function of pressure and humidity
- Characterization of a pulsed broadband heterogeneous 10 μm FP QCL gain chip for DIMP detection
- Optimization of new LPAS based absorption detection module (spectraphone) designs

Tunable external cavity QCL based spectrometer

EC QCL, June 2006

- PZT controlled EC-length
- PZT controlled grating angle
- Optimization of cavity alignment performed by means of lens positioning using electrically controlled 3D translation stage
- 35 cm⁻¹ wavelength tunability with present gain chip

G. Wysocki et al. Applied Physics B, 81, 769-777 (2005)

Peak optical power and bias of a 8.2-10.4 µm heterogeneous QCL gain element

R. Maulini, et al, APL 88, 201113 (2006)

