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Abstract: Quartz enhanced photoacoustic spectroscopy (QEPAS) was applied to detection of trace ethylene 
(C2H4) in nitrogen at atmospheric pressure. An absorption peak at 6177.15 cm-1 was accessed using a fiber 
coupled DFB diode laser. 
OCIS codes: (300.6430)  Spectroscopy, optoacoustic and thermo-optic; (280.3420) Laser sensors 

 
1. Introduction 

The availability of a cost-effective ethylene (C2H4) sensor would constitute a breakthrough for the fruit transport and 
storage industry. Ethylene is an important indicator of the degree of fruit ripening and also acts as a catalyst to 
initiate the ripening process, so that its concentration must be kept low during the transport and storage of fruits to 
avoid premature ripening. For example, the required target sensitivity is ~1 ppm for the transport of bananas. No 
cost-effective solution is presently available, since current instrumentation does not achieve the necessary operating 
performance (e.g stability, life-time) or is too costly (e.g gas chromatography). 

Laser-based spectroscopy is a promising technique for such an application, since potentially cost-effective laser 
sources commercially available in the NIR spectral region may be used to develop a C2H4 sensor. However, the 
target sensitivity should be achieved in a simple and compact device architecture, and the sensor must be capable of 
operating in the specific environmental conditions encountered in-field for this application, e.g. in the presence of 
high concentrations of potential interfering species such as humidity and carbon dioxide, as well as in a large range 
of temperature and in a noisy environment. 

This work describes a prototype C2H4 NIR sensor based on a quartz enhanced photoacoustic spectroscopy 
(QEPAS) approach. This version of the photoacoustic (PA) spectroscopy features small sensor footprint and weight 
combined with enhanced immunity to environmental acoustic noise.  

2. Sensor description 

A traditional QEPAS sensor optical configuration described in previous publications [1,2] was used. Briefly, a DFB 
diode laser operating at λ~1.62 µm was used to access an overtone absorption band of ethylene and excite a PA 
signal. The diode laser injection current was modulated to achieve wavelength modulation at a frequency equal to 
half the resonant frequency of a quartz tuning fork (QTF). The optical power reaching the QTF was ~15 mW. An 
electrical signal generated by the QTF in response to the PA signal was detected and used to quantify the ethylene 
concentration. A small fraction (~1%) of the laser radiation was directed to a reference cell and a photodiode (PD) to 
be used in a wavelength stabilization loop. This loop using the 3f component of the photodiode signal keeps the laser 
wavelength locked to a selected optical absorption peak of ethylene. Signals from the QTF and PD were measured 
and processed by a dedicated control electronics unit (CEU). This unit also controlled the laser current and 
temperature and executed the logical sequence of the sensor operation. A PC with LabView software was used to 
facilitate the CEU interface via a RS232 port and add to the flexibility of the sensor control. 

A certified mixture of 101 parts per million by volume (ppmv) C2H4 in N2 gas was used for the sensor 
performance assessment. This mixture was flowing through the sensor at a 50-100 sccm rate, and the pressure was 
controlled at a level of ~715 Torr. 

3. Spectral simulations and sensor performance 

Neither HITRAN nor GEISA databases include spectroscopic information on the C2H4 absorption in the NIR region. 
Therefore, an FTIR spectrum from the Pacific Northwest National Laboratory database [3] acquired for 1 atm 
pressure was used as a primary reference. Since it was believed important to develop a sensor without moving parts 
such as a vacuum pump, the use of a 1 atm absorption spectrum is considered appropriate for this purpose. Fig. 1 (a) 
shows a fraction of the PNNL C2H4 spectrum covering the tuning range of the available DFB diode laser. Fig. 1(b) 
presents a simulated 2f wavelength modulation spectrum for the same region, performed at a wavelength modulation 
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(WM) amplitude ∆ν=0.20 cm-1. This amplitude was found to be near-optimum, both numerically and 
experimentally. Fig. 1(b) shows that the highest 2f signal is expected for a peak at 6177.15 cm-1, which was also 
confirmed experimentally. 
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Fig. 1. (a) A fraction of FTIR spectrum from the PNNL database covered by the tuning range of the available DFB diode laser; (b) simulated 2f 
wavelength modulation spectrum assuming a 0.20 cm-1 WM amplitude and neglecting residual amplitude modulation (RAM). 

A close-up view of the region near the 6177.15 cm-1 peak is shown in Fig. 2(a), and Fig. 2(b) depicts an 
experimentally observed QEPAS signal in the same region. Our WM model neglects the residual amplitude 
modulation (RAM), which explains some deviations of the actually acquired data from simulations.  
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Fig. 2. (a) Simulated 2f signal covering the spectral range utilized for the QEPAS based C2H4 sensing; (b) Actually recorded QEPAS signal for 
the same spectral region: solid line – 101 ppmv C2H4, dotted .line –pure nitrogen. Data acquisition time per point is 5.6 s. 

Fig.2 shows three spectral features useful for spectroscopic monitoring of C2H4: a high positive peak at 6177.14 
cm-1, an almost equally strong negative peak at 6176.90 cm-1, and a zero signal at 6177.49 cm-1, where the 3f signal 
also crosses the zero level. Tuning of the diode laser to 6177.49 cm-1 allows calibration of the zero levels of CEU 
both for the 2f QTF signal and for 3f component of the reference cell photodiode signal. Hence, detection of the 
QEPAS signal when the laser is alternately tuned to the 6177.14 cm-1 positive and 6176.90 cm-1 negative peaks 
results in an accurate determination of the C2H4 concentration even if there is a slow drift of the zero level. Such a 
drift can occur, for example, when the temperature of the electronics varies. Fig. 3 depicts the observed QEPAS 
signal as measured by the CEU with the laser switching as described above. When pure nitrogen flow is directed to 
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the sensor replacing the C2H4 standard, the difference in signals measured at 6176.90 cm-1 and 6177.14 cm-1 
disappears. 
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Fig. 3. Continuous monitoring of QEPAS signal (101 ppmv C2H2:N2) with the laser wavelength alternately tuned to the 6177.14 cm-1 positive or 
6176.90 cm-1 negative peaks in the C2H2 2f absorption spectrum. From ~8:10 to 11:10 the sensor was flushed with pure N2, while switching of the 

laser wavelength continued at the same rate. Data acquisition time is ~11.2 s per point. 

Based on the experimental observations, the detection sensitivity is estimated to be a 4 ppmv/Hz1/2 noise-
equivalent C2H4 concentration, or 5.4×10-9 cm-1W/ Hz1/2. This is in agreement with the recently reported sensitivity 
of 5.6×10-9 cm-1W/ Hz1/2 observed with the same ADM for H2S QEPAS based detection at 780 Torr [4]. 
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