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Abstract: The HCN absorption spectrum from 6433 to 6613 cm-1 was acquired at room 
temperature by means of a tunable external cavity diode laser based quartz-enhanced 
photoacoustic spectroscopy (QEPAS) technique.  
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1. Introduction 
The detection, quantification and monitoring of hydrogen cyanide (HCN) is of interest because it is a highly toxic 
chemical species and it is also a warfare chemical agent. Therefore, the development of a HCN sensor capable of 
detecting sub-ppmv concentration levels and operating in harsh environments is an important issue [1]. A novel 
approach to photoacoustic spectroscopy (PAS) called quartz-enhanced photoacoustic spectroscopy (QEPAS) was 
introduced in 2002 by the Rice group, which utilized a quartz tuning fork (TF) as a resonant acoustic transducer [2]. 
Compared to conventional resonant PAS, QEPAS has several practical advantages: the sensor is immune to 
environmental acoustic noise, inexpensive, compact and has the capability to analyze extremely small gas samples 
[3]. In this work, we primarily report QEPAS based spectroscopy of HCN from 6433 to 6613 cm-1 using a 
commercial tunable external cavity diode laser.  
2. QEPAS experimental set-up 
A tunable fiber-coupled telecom-grade external cavity diode laser was employed as a QEPAS excitation source. The 
laser source (Tunics Plus), emitting single mode and single frequency radiation with a maximum optical power of 5 
mW, is continuously tunable in the near infrared from 1500 to 1640 nm (C and L bands) with a wavelength 
resolution of 0.001 nm (~ 4×10-3 cm-1) and a laser emission linewidth of < 1 MHz. The laser beam was first 
collimated by a fiber optic collimator, and then focused between the prongs of the tuning fork by a lens with focal 
length of 30-mm. Alignment of the diode laser beam to the accurate positioning of the TF was achieved by using a 
He-Ne laser. A quartz tuning fork with a high Q factor (Q ~ 8700 at normal atmospheric pressure) and a resonant 
frequency f0 of ~ 32.768 kHz was used as a photoacoustic transducer.  

The laser current was sinusoidally modulated at half the TF resonant frequency f0/2. The TF generated current 
was converted to voltage by a transimpedance preamplifier and then demodulated at f0 by the lock-in amplifier 
(Stanford Research Systems, Model SR 830 DSP). The lock-in amplifier and laser were controlled by a GPIB card. 
The 2nd harmonic signal was acquired by an AD card and sent to a personal computer for further analysis. All of 
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these functions were performed using a customized program in C.  
3. HCN spectrum 
In the present work, the absorption spectrum of HCN from 6433 to 6613 cm-1 was acquired by the tunable diode 
laser based QEPAS technique. The cell was filled with 74.3 mbar HCN and the integration time was 3 s. The upper 
panel of Fig. 1(a) shows the complete spectrum at this spectral range. The absorption at 6463.656 cm-1 is shown in 
Fig. 1 (b). In this work we focus on the analysis of the P branch of (2000) – (0000) band (middle panel of Fig. 1(a)). 
The line positions agree well with the calculated results according to the ro-vibrational constants from Ref 4 and the 
experimental and calculated results in Refs 5 and 6, with a standard deviation of ~ 0.056 cm-1. The observed 
difference of the relative absorption intensities of the experimental data with the line intensities of GEISA 03 
database [7] was caused by the laser power variations and pressure broadening effects. The absorption spectrum 
from 6501 to 6596 cm-1 was more complex. A portion of this range, from 6524 to 6537 cm-1 is shown in the lower 
panel of Fig. 1(a). The absorption in this spectral range belongs to the R branch of (2000) - (0000) band and the 
absorption of its isotopologue H13CN. Furthermore, the l-type resonance may also redistribute the intensity of the 
high-J rotational transitions and affect the e and f levels differently.  
4. Conclusion 
Details of the HCN absorption spectroscopy from 6433 to 6613 cm-1obtained by means of near infrared cw tunable 
external cavity diode laser based QEPAS will be reported.  
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Fig. 1. (a) Absorption spectrum of HCN from 6433 – 6613 cm-1. Upper panel: Complete spectrum, Middle: P branch 

of (2000) – (0000) band, Low: double lines; (b) Absorption at 6463.656 cm-1. 
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