Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613 cm⁻¹

Weixiong Zhao¹, Xiaoming Gao^{1, *}, Kun Liu¹, Frans J. M. Harren², Weidong Chen³, Frank K. Tittel⁴

¹ Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P. O. Box 1125, Hefei, Anhui 230031, P. R. China
² Department of Molecular and Laser Physics, Radboud University, Nijmegen, Netherlands
³ Laboratoire de Physicochimie de l'Atmosphère, CNRS UMR 8101, 189A, Av. Maurice Schumann, 59140 Dunkerque, France
⁴ Rice Quantum Institute, MS 366, Rice University, 6100 Main St., Houston, TX 77005, USA

* E-mail: <u>xmgao@aiofm.ac.cn</u>

Abstract: The HCN absorption spectrum from 6433 to 6613 cm⁻¹ was acquired at room temperature by means of a tunable external cavity diode laser based quartz-enhanced photoacoustic spectroscopy (QEPAS) technique.

©2008 Optical Society of America

OCIS codes: (300.6340) Spectroscopy, infrared; (300.6260) Spectroscopy, diode lasers; (280.3420) Laser sensors

1. Introduction

The detection, quantification and monitoring of hydrogen cyanide (HCN) is of interest because it is a highly toxic chemical species and it is also a warfare chemical agent. Therefore, the development of a HCN sensor capable of detecting sub-ppmv concentration levels and operating in harsh environments is an important issue [1]. A novel approach to photoacoustic spectroscopy (PAS) called quartz-enhanced photoacoustic spectroscopy (QEPAS) was introduced in 2002 by the Rice group, which utilized a quartz tuning fork (TF) as a resonant acoustic transducer [2]. Compared to conventional resonant PAS, QEPAS has several practical advantages: the sensor is immune to environmental acoustic noise, inexpensive, compact and has the capability to analyze extremely small gas samples [3]. In this work, we primarily report QEPAS based spectroscopy of HCN from 6433 to 6613 cm⁻¹ using a commercial tunable external cavity diode laser.

2. QEPAS experimental set-up

A tunable fiber-coupled telecom-grade external cavity diode laser was employed as a QEPAS excitation source. The laser source (Tunics Plus), emitting single mode and single frequency radiation with a maximum optical power of 5 mW, is continuously tunable in the near infrared from 1500 to 1640 nm (C and L bands) with a wavelength resolution of 0.001 nm (~ 4×10^{-3} cm⁻¹) and a laser emission linewidth of < 1 MHz. The laser beam was first collimated by a fiber optic collimator, and then focused between the prongs of the tuning fork by a lens with focal length of 30-mm. Alignment of the diode laser beam to the accurate positioning of the TF was achieved by using a He-Ne laser. A quartz tuning fork with a high Q factor (Q ~ 8700 at normal atmospheric pressure) and a resonant frequency f_0 of ~ 32.768 kHz was used as a photoacoustic transducer.

The laser current was sinusoidally modulated at half the TF resonant frequency $f_0/2$. The TF generated current was converted to voltage by a transimpedance preamplifier and then demodulated at f_0 by the lock-in amplifier (Stanford Research Systems, Model SR 830 DSP). The lock-in amplifier and laser were controlled by a GPIB card. The 2nd harmonic signal was acquired by an AD card and sent to a personal computer for further analysis. All of

these functions were performed using a customized program in C.

3. HCN spectrum

In the present work, the absorption spectrum of HCN from 6433 to 6613 cm⁻¹ was acquired by the tunable diode laser based QEPAS technique. The cell was filled with 74.3 mbar HCN and the integration time was 3 s. The upper panel of Fig. 1(a) shows the complete spectrum at this spectral range. The absorption at 6463.656 cm⁻¹ is shown in Fig. 1 (b). In this work we focus on the analysis of the P branch of $(20^{0}0) - (00^{0}0)$ band (middle panel of Fig. 1(a)). The line positions agree well with the calculated results according to the ro-vibrational constants from Ref 4 and the experimental and calculated results in Refs 5 and 6, with a standard deviation of ~ 0.056 cm⁻¹. The observed difference of the relative absorption intensities of the experimental data with the line intensities of GEISA 03 database [7] was caused by the laser power variations and pressure broadening effects. The absorption spectrum from 6501 to 6596 cm⁻¹ was more complex. A portion of this range, from 6524 to 6537 cm⁻¹ is shown in the lower panel of Fig. 1(a). The absorption in this spectral range belongs to the R branch of $(20^{0}0) - (00^{0}0)$ band and the absorption of its isotopologue H¹³CN. Furthermore, the *l*-type resonance may also redistribute the intensity of the high-*J* rotational transitions and affect the *e* and *f* levels differently.

4. Conclusion

Details of the HCN absorption spectroscopy from 6433 to 6613 cm⁻¹ obtained by means of near infrared cw tunable external cavity diode laser based QEPAS will be reported.

5. Acknowledgements

X. Gao and W. Chen acknowledge the financial support from the French International Program of Scientific Cooperation (CNRS/PICS n° 3359). The authors acknowledge Dr. Anatoliy A. Kosterev for his careful revision of the manuscript.

Fig. 1. (a) Absorption spectrum of HCN from 6433 – 6613 cm⁻¹. Upper panel: Complete spectrum, Middle: P branch of (20⁰0) – (00⁰0) band, Low: double lines; (b) Absorption at 6463.656 cm⁻¹.

6. References

- A. A. Kosterev, et al., "Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN", Appl. Phys. B 85, 295-300 (2006)
- [2] A. A. Kosterev, et al., "Quartz-enhanced photoacoustic spectroscopy", Opt. Lett. 27, 1902 1904 (2002).
- [3] A. A. Kosterev, et al., "Applications of quartz tuning forks in spectroscopic gas sensing", Rev. Sci. Instrum. 76, 043105 (2005).
- [4] A. Maki, et al., "Infrared Transitions of H¹²C¹⁴N and H¹²C¹⁵N between 500 and 10 000 cm⁻¹", J. Mol. Spectrosc. 180, 323 336 (1996).
- [5] H. Sasada and K. Yamada, "Calibration lines of HCN in the 1.5 µm region", Appl. Opt. 29, 3535 3547 (1990).
- [6] H. Sasada, "1.5 μm DFB semiconductor laser spectroscopy of HCN", J. Chem. Phys. 88, 767 777 (1987).
- [7] N. Jacquinet-Husson, et al., "The 2003 edition of the GEISA/IASI spectroscopic database", JQSRT 95, 429 467 (2005).