

MIRIFISENS FP7 IP Project MID-INFRARED INNOVATIVE LASERS FOR IMPROVED SENSOR OF HAZARDOUS SUBSTANCES Mid-Infrared Exchanges and Exploitation MIR-X workshop

14th and 15th January at ETH Zurich

Name:	Frank K. Tittel
Institution:	Rice University
Title of Talk:	
Mid-infrared semiconductor laser based trace gas technologies: recent advances and	
applications	
Abstract (3000 car. max)	
This talk will focus on recent advances in the development of sensors, based on infrared	
semiconductor lasers for the detection, quantification and monitoring of trace gas species and	
their application in atmospheric chemistry, medical diagnostics, life sciences, industrial process	
control and national security. The development of compact trace gas sensors, in particular	
based on quantum cascade and interband cascade lasers which permit the targeting of strong	
fundamental rotational-vibrational transitions in the mid-infrared and that are one to two	
orders of magnitude more intense than overtone transitions in the near infrared. Specifically,	
the spectroscopic detection and monitoring of six molecular species, such as ammonia (NH3),	
nitric oxide (NO), carbon monoxide (CO), sulfur dioxide (SO2), methane (CH4), nitrous oxide	
(N2O) and hydrogen peroxide (H2O2) will be described. These molecules were detected using	
conventional photoacoustic (CPAS) and quartz-enhanced photoacoustic spectroscopy (QEPAS).	
CPAS and QEPAS can achieve minimum detectable absorption losses in the range from 10-8 to	
10-11 cm-1/VHz. Several recent examples of real world applications of field deployable gas	
sensors will be described. Future work includes the development of cavity-enhanced optical	
feedback –assisted CPAS and QEPAS in order to obtain significantly lower minimum detectable	
gas concentration levels of < 10 pptv.	