

DUTLINE

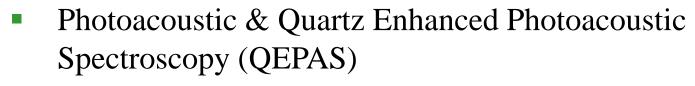
Rice University ECE Affiliates Day

Mar. 23, 2018

Houston, TX

Mid-Infrared Laser based Trace Gas Sensor Technologies: Recent Advances and Applications

F.K.Tittel Electrical & Computer Engineering and Bioengineering, Rice University, Houston, TX 77005 <u>http://www.ece.rice.edu/~lasersci/</u>


Novel Laser-Based Trace Gas Sensor Technologies

- Mid-IR Laser Absorption Spectroscopy (LAS) based on novel Multipass Gas Cell Designs
- Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)
- Examples of Mid-infrared & THz Trace Gas Sensor Systems
- Field Deployment of Trace Gas Sensors

Research support by NSF ERC MIRTHE, NSF-ANR NexCILAS, the Robert Welch Foundation as well as subawards ARPA-E from AERIS Technologies & Maxion-Thorlabs is acknowledged

Laser-Based Trace Gas Sensing Techniques

- Optimum Molecular Absorbing Transition
 - Overtone or Combination Bands (NIR)
 - Fundamental Absorption Bands (Mid-IR)
- Long Optical Pathlength
 - Multipass Absorption Gas Cell (e.g., White, Herriot, Chernin, Aeris Technologies, and Circular Cylindrical Multipass Cell
 - Cavity Enhanced and Cavity Ringdown Spectroscopy
 - Open Path Monitoring (with retro-reflector or back scattering from topographic target): Standoff and Remote Detection
 - Fiberoptic & Wave-guide Evanescent Wave Spectroscopy
- Spectroscopic Detection Schemes
 - Frequency or Wavelength Modulation
 - Balanced Detection
 - Zero-air Subtraction

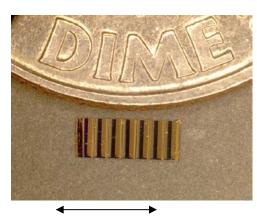
Key Characteristics of Mid-IR QCL & ICL Sources – March 2018

Band – structure engineered devices

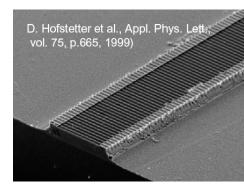
Emission wavelength is determined by layer thickness – MBE or MOCVD; QCLs operate in the 3 to $24 \,\mu m$ spectral region and ICLs can cover the 3 to $\overline{6}$ µm spectral range.

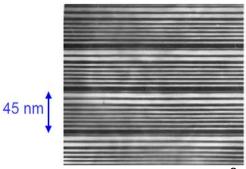
- Compact, reliable, stable, long lived, and commercially available
- Fabry-Perot (FP), single mode (DFB) and multi-wavelength devices

<u>Wide spectral tuning ranges in the mid-IR</u>

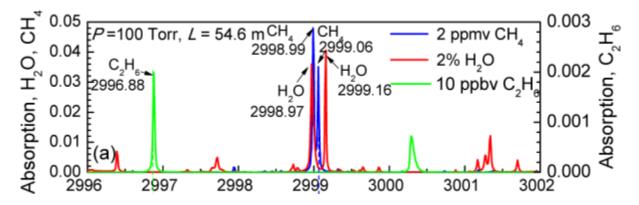

- 1.5 cm⁻¹ using injection current control for DFB devices
- 10-20 cm⁻¹ using temperature control for DFB devices
- ~100 cm⁻¹ using current and temperature control for QCLs DFB Array
- ~ 525 cm⁻¹ (22% of c.w.) using an external grating element and FP chips with heterogeneous cascade active region design; also QCL DFB array & Optical Frequency Combs (OFCs): > 100 to < 450 cm⁻¹ with kHz to subkHz resolution and a comb spacing of > 10 GHz

Narrow spectral linewidths

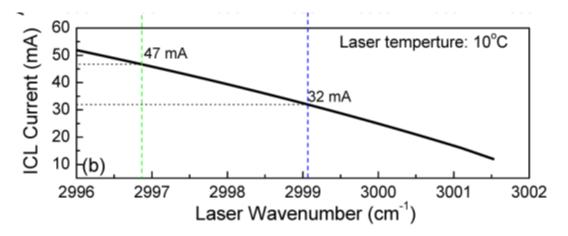

- CW: 0.1 3 MHz & <10kHz with frequency stabilization Pulsed: ~ 300 MHz


<u>High pulsed and CW powers of QCLs & ICLs at RT</u> temperature

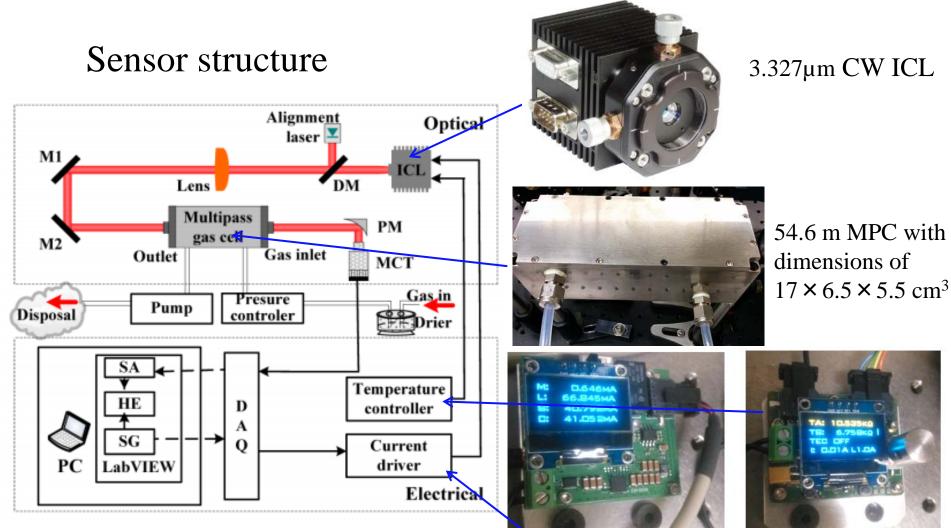
- TEC QCL pulsed peak power of ~ 203 W with 10% wall plug efficiency
- CW QCL powers of ~ 5 W with 23% wall plug efficiency at 293 K
- > 600 mW CW DFB QCL at RT; wall plug efficiency 23% at 4.6 μ m
- > 5mW CW, DFB ICL at RT



4 mm



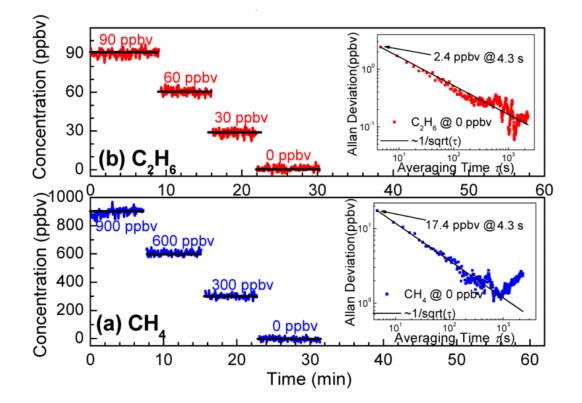
HITRAN Line Selection for a CH₄ & C₂H₆ Sensor



(a) HITRAN based absorption spectra of C_2H_6 (10 ppbv), CH_4 (2 ppmv), and $H_2O(2\%)$ in a narrow spectral range from 2996 cm⁻¹ to 3002 cm⁻¹ at a pressure of 100 Torr and an absorption length of 54.6 m. C_2H_6 , CH_4 , and H_2O lines are shown in green, blue and red, respectively.

(b) Plot of the ICL emission wavenumber as a function of the ICL drive current at 10 $^{\circ}$ C.

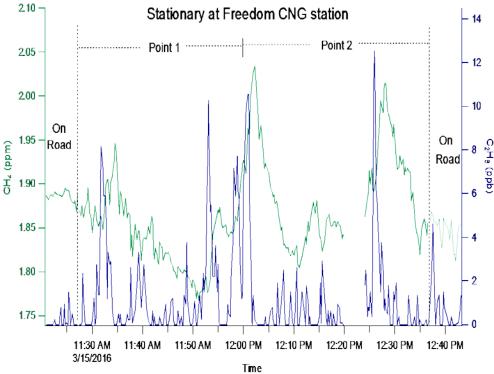
Laser Absorption Spectroscopy based CH₄ & C₂H₆ Dual-gas Sensor



Schematic of a mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave ICL

Laser current driver with dimensions of $4.2 \times 4.8 \times 2.0 \text{ cm}^3$

Temperature controller with dimensions of $4.5 \times 3.6 \times 2.0 \text{ cm}^3$


Chemical Sensing Performance of CH₄ & C₂H₆

Measurement results of concentration levels of (a) four CH_4 samples (0, 300, 600, 900 ppbv) and (b) four C_2H_6 samples (0, 30, 60, 90 ppbv). The insets in (a) and (b) exhibit the Allan deviation plots obtained from long-term measurements on 0 ppmv CH_4 and 0 ppbv C_2H_6 samples for ~40 min, respectively, using the calibrated dual-gas sensor system.

Optical CH₄ Sensor: Gas Leakage Monitoring

 CH_4 Field Test at the Freedom Energy CNG Station, Pasadena, TX. An C_2H_6 sensor was also included in the field test for dual-gas monitoring

Both CH_4 and C_2H_6 were measured at two points at the Freedom Energy CNG station in March 2016. Points 1 & 2 correspond to two different locations at the CNG station where the vehicle was stationary (in the proximity of two different gas dispensing units). Each point was tested for ~ 0.5 hour.

Comparison of Rice CH₄ Sensor System and current commercially available CH₄ Platforms

Size	Rice	Picarro	ABB-LGR I	ABB-LGR II	Aerodyne
Opt. Path length and method	MIR TDLAS: ~ 9 m	NIR CRDS: >2000m	NIR OA-ICOS: > 1000m	NIR OA-ICOS: > 2000m	MIR TDLAS: 70- 100 m
Sensitivity/sec	< 5-10 ppb	1-2 ppb	5 ppb	2 ppb	<1 ppb
Accuracy (drift)	2 ppb stabilized	2 ppb	20 ppb, temp. stabilized	2 ppb	2 ppb
Cell Volume, cc	60	30	500	2000	2000
Pump Size (10 sec flush time)	~ 1 lpm	~ 0.5 lpm	~ 11 lpm	~ 45 lpm	~ 45 lpm
Cavity Mirror Reflectance	98.5%-99%	>99.99%	>99.99%	>99.99%	>99.99%
Power Consumption	2-20 W	200 W	70 W	200 W	400 W
Weight	~ 2-4 kg	~ 20 kg	~ 15 kg	~ 40 kg	~ 40 kg
Cost	~ 20-25K USD	~ 40-50K USD	~ 25K USD	~ 40K USD	~ 100K USD

US Department of Energy Advanced Research Project Agency – Energy (ARPA-E), Methane Observation Networks with Innovative Technology to obtain Reductions (MONITOR)

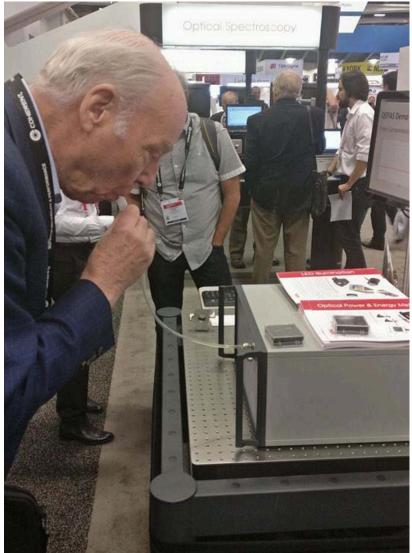
Dogs in smell test still beat trace gas technologies in 2017

Rice Laser Science - Research Activities

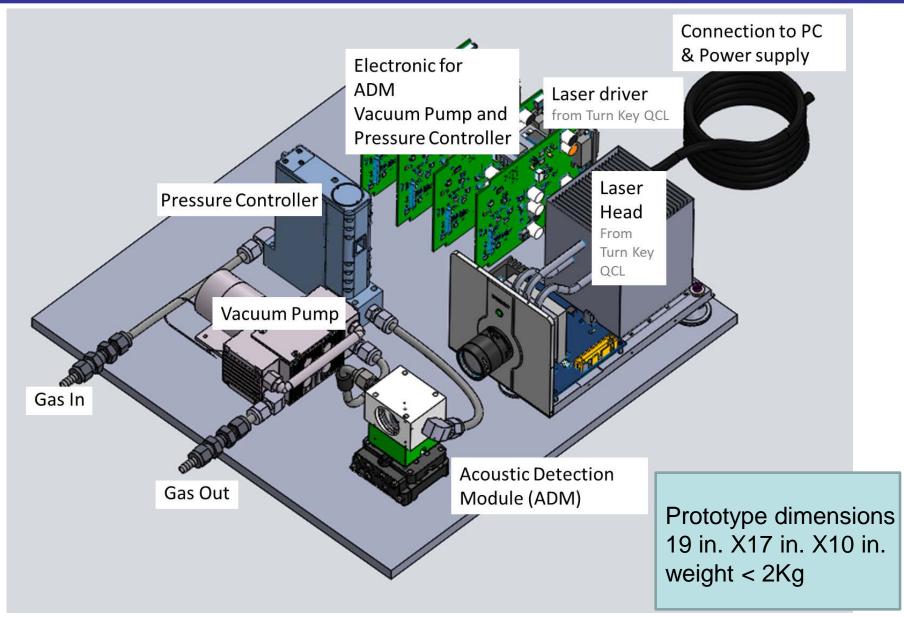
- Novel gas sensing techniques development and implementation
- Highly sensitive trace gas sensors portable for insitu & real time detection

• Potential applications:

- Breath analysis
- Hydrocarbon gas monitoring
- Environmental monitoring
- Leak detection
- Monitoring of hotspot areas (toxic gases, explosive precursors)
- On-demand chemical sensing
- Third party consulting



Visit by Frank Tittel to Photonics West 2018 ThorLabs Booth



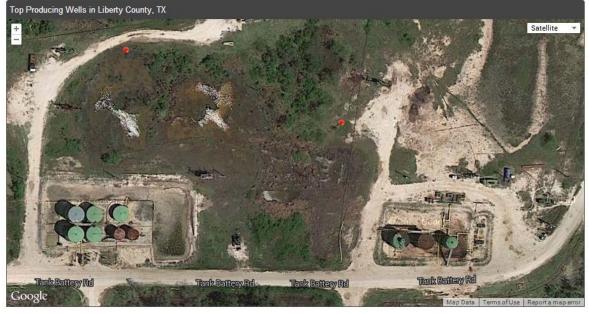
First commercial QEPAS prototype

First commercial QEPAS prototype in collaboration with THORLABS

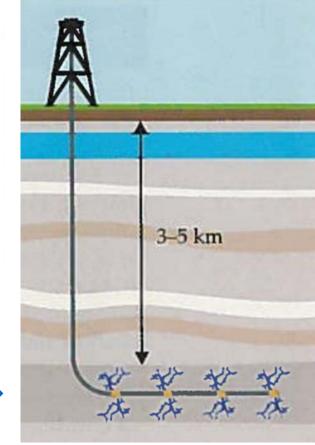
Future development

Deployment of QEPAS prototype on drone system In collaboration with Prof. E. Knightly and Dr. R. Petroli

Summary, Conclusions and Future Work


- Development of robust, compact, sensitive, selective mid-IR trace gas sensor technology based on RT, CW high performance DFB ICLs & QCLs for environmental monitoring, atmospheric chemistry, industrial process control and medical diagnostics.
- ICLs and QCLs were used in both TDLAS and QEPAS based sensor platforms
- Performance evaluation of four target trace gas species (xyzz) were reported
- I-QEPAS demonstration resulted in a factor of 240 increase in the detection sensitivity
 - CO₂ MDL of 300 pptv at 50mbar was achieved for a 20 sec integration time.
- THz-QEPAS H₂S sensing demonstration using a custom QTF resulted in a NNEA of 10^{-10} cm⁻¹W(Hz)^{-1/2}. MDL was 13 ppmv for a 30 sec integration time.
- Development of mid-IR electrically pumped interband cascade optical frequency combs (OFCs) was performed jointly with NASA- JPL, Pasadena, CA, NRL, Washington, DC and Polysense, University of Bari (Italy)
- Development of an "active" I-QEPAS system for CO and NO detection in the ppt range
- Future development of trace gas sensors for monitoring of broadband absorbers: acetone(C_3H_6O), propane (C_3H_8), benzene (C_6H_6), acetone peroxide-TATP ($C_6H_{12}O_4$)
- Development of QEPAS sensor on drone System in collaboration with the Knightly Research tteam

A North Dakota Oil Facility in 2016.



Typical Oil & Gas Production Site near Houston, TX

This figure depicts the result of a sequence of four fracking injections obtained by directional drilling which creates horizontal production in the target stratum.

A DOE-ARPA-E methane detection project at 3.327 μ m started at an ARPA-E CSU site in 2017

