## COMPACT QUANTUM CASCADE LASER BASED <sup>13</sup>CO<sub>2</sub>/<sup>12</sup>CO<sub>2</sub> ISOTOPIC RATIOMETER FOR FIELD MEASUREMENTS OF VOLCANIC GASES

F. K. Tittel<sup>1</sup>, D. Weidmann<sup>1</sup>, C. Roller<sup>1</sup>, R. F. Curl<sup>1</sup>, and K. Uehara<sup>2</sup>

<sup>1</sup> Rice University
6100 Main Street, Houston, (TX, 77251, USA)
<sup>2</sup> Keio University

3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa (223-8522 Japan) and SORST Project, Japan Science and Technology Corporation 4-1-8 Honcho, Kawaguchi, Saitama (332-0012, Japan)

E-mail: Weidmann @rice.edu

High precision measurements of  $^{13}\text{CO}_2/^{12}\text{CO}_2$  are needed in a wide range of fields that include volcano emission studies [1-2], atmospheric chemistry, combustion diagnostics, medical diagnostics and biology. Currently we are developing a compact, field deployable quantum cascade laser based sensor to perform real time measurements with a precision of  $\delta \sim 0.1^{9}/_{00}$ , using absorption spectroscopy. The initial design of this analyser will target the prediction of potential volcano activities, but can be useful in other trace gas sensing applications.

A thermoelectrically cooled, pulsed, single frequency quantum cascade laser will be employed as spectroscopic source, which is required for field deployment. The laser is designed to operate at 4.33  $\mu m$ , where the P-branch of  $^{12}\text{CO}_2$  overlaps the R-branch of  $^{13}\text{CO}_2$  of the  $00^01\text{-}00^00$  transition.. To reach a high precision delta value, the influences of temperature and pressure stabilities must be taken into account, as well as the water vapor collision broadening.

<sup>[1]</sup> M. Erdélyi, D. Richter, and F.K. Tittel, " $^{13}CO_2/^{12}CO_2$  isotopic ratio measurements using a difference-frequency-based sensor operating at 4.35  $\mu$ m," Applied Physics B **75**, 289-295 (2002).

<sup>[2]</sup> D. Richter, M. Erdelyi, R. F. Curl, F. K. Tittel, C. Oppenheimer, H. J. Duffell, and M. Burton, "Fields measurements of volcanic gases using tunable diode laser based midinfrared and Fourier transform infrared spectrometers", Optics and Lasers in Engineering, 37, 171-186 (2002).