Wide Range of Trace Gas Sensing Applications - Urban and Industrial Emission Measurements - Industrial Plants - Combustion Sources and Processes (e.g. fire detection) - · Automobile, Truck, Aircraft and Marine Emissions - Rural Emission Measurements - Agriculture & Forestry, Livestock - · Environmental Monitoring - Atmospheric Chemistry - Volcanic Emissions - Chemical Analysis and Industrial Process Control - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries - Spacecraft and Planetary Surface Monitoring - · Crew Health Maintenance & Life Support - · Applications in Health and Life Sciences - · Technologies for Law Enforcement and National Security - · Fundamental Science and Photochemistry Trace Gas Sensing Examples ### Merits of QE Laser-PAS based Trace Gas Detection - High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range - Immune to ambient and flow acoustic noise, laser noise and etalon effects - Significant reduction of sample volume (< 1 mm³) - · Applicable over a wide range of pressures - Temperature, pressure and humidity insensitive - Rugged and low cost (compared to other optical sensor architectures) # Motivation for NH₃ Detection - Monitoring of gas separation processes - · Spacecraft related gas monitoring - Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques - · Semiconductor process monitoring & control - · Monitoring of industrial refrigeration facilities - · Pollutant gas monitoring - · Atmospheric chemistry - Medical diagnostics (kidney & liver dysfunctions) to e e 3 bear or e | Molecule (Host) | Frequency, | Pressure, | NNEA,
em [®] W/Hz | Power,
mW | NEC (v=1s). | |--|---|---|---|-----------------------|-------------------------------| | R ⁴ O (N ³)*** | 7306.75 | 60 | 1.9×10 | 9.5 | 0.09 | | HCN (alex 50% RII)* | 6339.11 | 60 | = 4.3×10 | 50 | 0,16 | | Chi (N) | 6529.17 | 75 | -2.5=10* | - 40 | 0.06 | | NH ₄ (N ₄)* | 6528.76 | 575 | 1.1-10 | 60 | 0,06 | | C2H4 (N2)* | 6177.07 | 715 | 5.4+10 | 15 | 1.7 | | CIL, (N1 + 0.3% 160) | 6037.09 | 950 | 1.0=10 | 13.7 | 0.8 | | CO ₂ (breath -100% RJI) | 6361.25 | 90 | 1.6×30° | 26 | 410 | | H _i S (N _i)* | 6337.63 | 780 | 5.6×10* | 45 | 0.30 | | CO ₁ (N ₁ +).5% H2O) * | 4991.26 | 50 | 1.4=10- | 4.4 | 18 | | CH ₁ O (N ₁ :75% RH)* | 2804.90 | 75 | 8.7×10* | 7.2 | 0.12 | | CO (Na) | 2196.66 | 50 | 5 3×10" | 13 | 0.5 | | CO (propylene) | 2196.66 | 50 | 7.4 = 10 | 6.5 | 0.14 | | NyO (nir+5%SF ₄) | 2195.63 | 50 | 1.5+10* | 19 | 100.0 | | Cillion (Ni)** | 19,4.2 | 770 | 2.2=10 | 10 | 90 | | C ₁ HF ₁ (N ₂)*** | 1208.62 | 770 | 7.8=10" | 6.6 | 0.009 | | NH ₁ (N ₂)* | 1046.39 | 110 | 1.6 < 10 | 20 | 0.006 | | N ₂ O (a)r+5%SF ₄)
(3H ₂ OH (N ₂)***
(3HF ₄ (N ₂)**** | 2195.0.3
19,44.2
1208.6.2
1046.39
d double optard p
and metal moves
alogs above pton or
attorn for available | 50 770 770 110 are through AD resultive efficient laner powers an | 1.5=10 ⁴ 2.2=10 ⁵ 7.8=10 ⁴ 1.6<10 ⁹ | 19
10
6.6
20 | 0.00†
90
0.009
0.006 | # Wireless Sensor Networks for Gas Sensing Each point called "mote" Advantages? Spatial resolution Measure fluxes What is needed? Low power Low cost Ultra miniature Replicable Autonomy RICE ### Summary & Future Directions of QCL based Gas Sensor Technology - Quantum and Interband Cascade Laser based Trace Gas Sensors 5.1 1.1 - Compact, tunable, and robust High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz) - Compact, natione, and orders High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz) Capable of fast data acquisition and analysis Detected 13 trace gases to date: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, H₂CO, SO₂, C₃H₄OH, C₂HF₃ and several isotopic species of C, O, N and H. New Applications of Trace Gas Detection Environmental Monitoring (urban quality + H₂CO and, isotopic ratio measurements of CO₂ and CH₃, fire detection and quantification of engine exhausts) Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₃S) Medical & biomedical diagnostics (NO, NH₃, N₂O, H₃CO and CH₃COCH₃) Hand-held sensors and sensor network technologies (CO₂) Future Directions and Collaborations Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR interband and intersubband quantum cascade lasers New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e. sensitive concentration measurements of broadband absorbers, in particular VOCs. HCS and multi-species detection) Development of optically gas sensor networks based on QEPAS and LAS - Development of optically gas sensor networks based on QEPAS and LAS