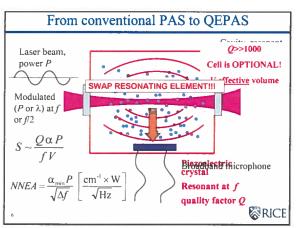
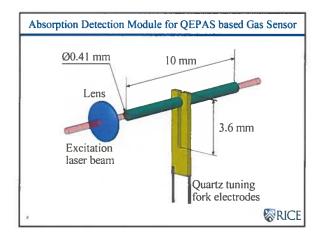
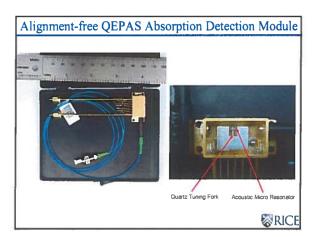

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
- Industrial Plants
- Combustion Sources and Processes (e.g. fire detection)
- · Automobile, Truck, Aircraft and Marine Emissions
- Rural Emission Measurements
 - Agriculture & Forestry, Livestock
- · Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
- · Crew Health Maintenance & Life Support
- · Applications in Health and Life Sciences
- · Technologies for Law Enforcement and National Security
- · Fundamental Science and Photochemistry





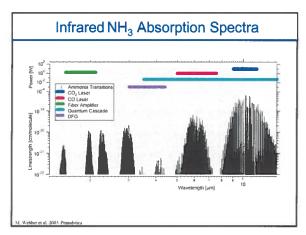


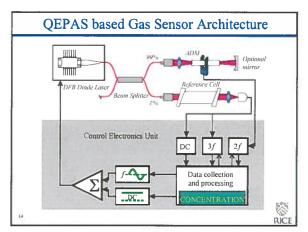
Trace Gas Sensing Examples

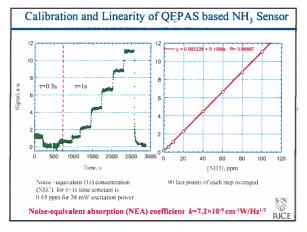
Merits of QE Laser-PAS based Trace Gas Detection

- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Immune to ambient and flow acoustic noise, laser noise and etalon effects
- Significant reduction of sample volume (< 1 mm³)
- · Applicable over a wide range of pressures
- Temperature, pressure and humidity insensitive
- Rugged and low cost (compared to other optical sensor architectures)

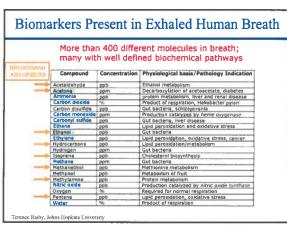
Motivation for NH₃ Detection

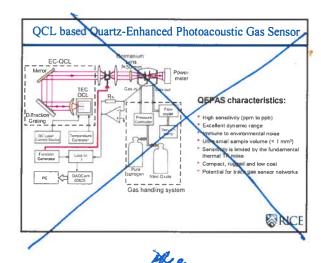

- Monitoring of gas separation processes
- · Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- · Semiconductor process monitoring & control
- · Monitoring of industrial refrigeration facilities
- · Pollutant gas monitoring
- · Atmospheric chemistry
- Medical diagnostics (kidney & liver dysfunctions)

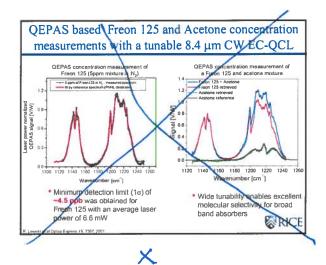


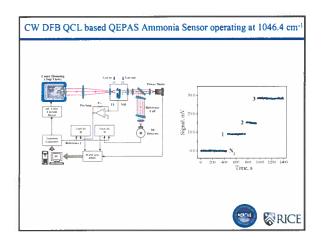


to e e



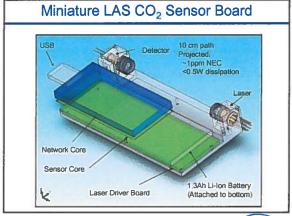






3

bear or e


Molecule (Host)	Frequency,	Pressure,	NNEA, em [®] W/Hz	Power, mW	NEC (v=1s).
R ⁴ O (N ³)***	7306.75	60	1.9×10	9.5	0.09
HCN (alex 50% RII)*	6339.11	60	= 4.3×10	50	0,16
Chi (N)	6529.17	75	-2.5=10*	- 40	0.06
NH ₄ (N ₄)*	6528.76	575	1.1-10	60	0,06
C2H4 (N2)*	6177.07	715	5.4+10	15	1.7
CIL, (N1 + 0.3% 160)	6037.09	950	1.0=10	13.7	0.8
CO ₂ (breath -100% RJI)	6361.25	90	1.6×30°	26	410
H _i S (N _i)*	6337.63	780	5.6×10*	45	0.30
CO ₁ (N ₁ +).5% H2O) *	4991.26	50	1.4=10-	4.4	18
CH ₁ O (N ₁ :75% RH)*	2804.90	75	8.7×10*	7.2	0.12
CO (Na)	2196.66	50	5 3×10"	13	0.5
CO (propylene)	2196.66	50	7.4 = 10	6.5	0.14
NyO (nir+5%SF ₄)	2195.63	50	1.5+10*	19	100.0
Cillion (Ni)**	19,4.2	770	2.2=10	10	90
C ₁ HF ₁ (N ₂)***	1208.62	770	7.8=10"	6.6	0.009
NH ₁ (N ₂)*	1046.39	110	1.6 < 10	20	0.006
N ₂ O (a)r+5%SF ₄) (3H ₂ OH (N ₂)*** (3HF ₄ (N ₂)****	2195.0.3 19,44.2 1208.6.2 1046.39 d double optard p and metal moves alogs above pton or attorn for available	50 770 770 110 are through AD resultive efficient laner powers an	1.5=10 ⁴ 2.2=10 ⁵ 7.8=10 ⁴ 1.6<10 ⁹	19 10 6.6 20	0.00† 90 0.009 0.006

Wireless Sensor Networks for Gas Sensing Each point called "mote" Advantages? Spatial resolution Measure fluxes What is needed? Low power Low cost Ultra miniature Replicable Autonomy RICE

Summary & Future Directions of QCL based Gas Sensor Technology

- Quantum and Interband Cascade Laser based Trace Gas Sensors

5.1 1.1

- Compact, tunable, and robust High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)

- Compact, natione, and orders

 High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)

 Capable of fast data acquisition and analysis

 Detected 13 trace gases to date: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, H₂CO, SO₂, C₃H₄OH, C₂HF₃ and several isotopic species of C, O, N and H.

 New Applications of Trace Gas Detection

 Environmental Monitoring (urban quality + H₂CO and, isotopic ratio measurements of CO₂ and CH₃, fire detection and quantification of engine exhausts)

 Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₃S)

 Medical & biomedical diagnostics (NO, NH₃, N₂O, H₃CO and CH₃COCH₃)

 Hand-held sensors and sensor network technologies (CO₂)

 Future Directions and Collaborations

 Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR interband and intersubband quantum cascade lasers

 New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e. sensitive concentration measurements of broadband absorbers, in particular VOCs. HCS and multi-species detection)

 Development of optically gas sensor networks based on QEPAS and LAS

 - Development of optically gas sensor networks based on QEPAS and LAS

