

### Advanced Measurement Concepts for Mid-infrared Semiconductor Laser based Trace Gas Sensor Technologies: Opportunities & Challenges

#### Frank K. Tittel

Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA http://www.ece.rice.edu/~lasersci/



**MIOMD 2014** 

Montpellier,

- New Laser Based Trace Gas Sensor Technology
  - Novel Multipass Gas Absorption Cells & Electronics
  - Quartz Enhanced Photoacoustic Spectroscopy
- Examples of seven Mid-infrared Trace Gas Species
  - NO, CO, SO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, H<sub>2</sub>O<sub>2</sub> & C<sub>3</sub>H<sub>6</sub>O
- Future Directions of Laser Based Trace Gas Sensor Technologies and Conclusions

Research support by NSF ERC MIRTHE, NSF-ANR NexCILAS, the Robert Welch Foundation, and Sentinel Photonics Inc. via an EPA Phase 1 SBIR sub-award is acknowledged

## Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
  - Industrial Plants
  - Combustion Sources and Processes (e.g. fire detection)
  - Automobile, Truck, Aircraft and Marine Emissions
- Rural Emission Measurements
  - Agriculture & Forestry, Livestock
- Environmental Monitoring
  - Atmospheric Chemistry (e.g isotopologues, climate modeling,...)
  - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
  - Petrochemical, Semiconductor, Pharmaceutical, Metals Processing, Food & Beverage Industries, Nuclear Technology & Safeguards
- Spacecraft and Planetary Surface Monitoring
  - Crew Health Maintenance & Life Support
- Applications in Medical Diagnostics and the Life Sciences
- Technologies for Law Enforcement, Defense and Security
- Fundamental Science and Photochemistry



## Laser based Trace Gas Sensing Techniques

- Optimum Molecular Absorbing Transition
  - Overtone or Combination Bands (NIR)
  - Fundamental Absorption Bands (Mid-IR)
- Long Optical Pathlength
  - Multipass Absorption Gas Cell (e.g. White, Herriot, Chernin, Aeris Technologies; Circular Cylindrical: Empa & Loncar)
  - Cavity Enhanced and Cavity Ringdown Spectroscopy
  - Open Path Monitoring (with retro-reflector): Standoff and Remote Detection
  - Fiberoptic Evanescent Wave Spectroscopy
- Spectroscopic Detection Schemes
  - Frequency or Wavelength Modulation
  - Balanced Detection
  - Zero-air Subtraction
  - Photoacoustic & Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)





## Mid-IR Source Requirements for Laser Spectroscopy

| <b>REQUIREMENTS</b>                                                           | IR LASER SOURCE                                           |  |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| Sensitivity (% to pptv)                                                       | Optimum Wavelength, Power                                 |  |  |  |  |
| Selectivity (Spectral Resolution)                                             | Stable Single Mode Operation and<br>Narrow Linewidth      |  |  |  |  |
| Multi-gas Components, Multiple<br>Absorption Lines and Broadband<br>Absorbers | Mode Hop-free Wavelength<br>Tunability                    |  |  |  |  |
| Directionality or Cavity Mode<br>Matching                                     | Beam Quality                                              |  |  |  |  |
| Rapid Data Acquisition                                                        | Fast Time Response                                        |  |  |  |  |
| Room Temperature Operation                                                    | High wall plug efficiency, no cryogenics or cooling water |  |  |  |  |
| Field deployable in harsh environments                                        | Compact & Robust                                          |  |  |  |  |

## Key Characteristics of Mid-IR QCL & ICL Sources - Oct. 2014

Band - structure engineered devices

Emission wavelength is determined by layer thickness – MBE or MOCVD; Type I QCLs operate in the 3 to 24 μm spectral region; Type II and GaSb based ICLs can cover the 3 to 6 μm spectral range.

- Compact, reliable, stable, long lifetime, and commercial availability Fabry-Perot (FP), single mode (DFB) and multi-wavelength devices

#### Wide spectral tuning ranges in the mid-IR

- 1.5 cm<sup>-1</sup> using injection current control for DFB devices
- 10-20 cm<sup>-1</sup> using temperature control for DFB devices
- ~100 cm-1 using current and temperature control for QCL DFB Array ~525 cm-1 (22% of c.w.) using an external grating element and FP chips with heterogeneous cascade active region design; also QCL DFB Array

#### Narrow spectral linewidths

- CW: 0.1 3 MHz &  $<\!10kHz$  with frequency stabilization (0.0004 cm  $^{-1})$  Pulsed:  $\sim300$  MHz

#### High pulsed and CW powers of QCLs\_at TEC/RT temperatures

- Room temperature pulsed power of > 30 W with 44% wall plug
- CW powers of ~ 5 W with 23% wall plug efficiency at 293 °K
- > 600 mW CW DFB @ 285 °K; wall plug efficiency 23% at 4.6 μm







### Typical Oil & Gas Production Site near Houston, TX



3-5 km

This figure shows the result of a sequence of four fracking injections obtained by directional drilling which creates horizontal production in target stratum.



oject f

A proposed DOE-ARPA-E  $CH_4$  detection project at 3.327  $\mu m$  will start in 2015 at a wellpad of 10 m x10 m with a 1 m spatial resolution.



## Oil in Water Detection





- Produced water
  - legislation: < 15 ppm</li>
- Injection water
  - Economic reasons target value: < 5 ppm or lower</li>

IQCLSW 2014, Policore, Italy: B. Lendl et al, Vienna University of Technology, Austria

# Comparison of proposed Rice CH<sub>4</sub> Sensor System and current commercially available CH<sub>4</sub> Platforms

| Size                          | Rice             | Picarro          | ABB-LGR I                | ABB-LGR II           | Aerodyne            |
|-------------------------------|------------------|------------------|--------------------------|----------------------|---------------------|
| Opt. Path length and method   | MIR TDLAS: ~ 9 m | NIR CRDS: >2000m | NIR OA-ICOS: > 1000m     | NIR OA-ICOS: > 2000m | MIR TDLAS: 70-100 m |
| Sensitivity/sec               | < 5-10 ppb       | 1-2 ppb          | 5 ppb                    | 2 ppb                | <1 ppb              |
| Accuracy (drift)              | 2 ppb stabilized | 2 ppb            | 20 ppb, temp. stabilized | 2 ppb                | 2 ppb               |
| Cell Volume, cc               | 60               | 30               | 500                      | 2000                 | 2000                |
| Pump Size (10 sec flush time) | ~ 1 lpm          | ~ 0.5 lpm        | ~ 11 lpm                 | ~45 lpm              | ~ 45 lpm            |
| Cavity Mirror Reflectance     | 98.5%-99%        | >99.99%          | >99.99%                  | >99.99%              | >99,99%             |
| Power Consumption             | 2-20 W           | 200 W            | 70 W                     | 290 W                | 400 W               |
| Weight                        | ~ 2-4 leg        | ~20 kg           | ~ 15 kg                  | ~ 40 lcg             | ~ 40 kg             |
| Cost                          | - 20-25K USD     | ~ 40-50K USD     | ~ 25K USD                | ~40K USD             | ~ 100K USD          |

US Department of Energy Advanced Research Project Agency – Energy (ARPA-E), Methane Observation Networks with Innovative Technology to obtain Reductions (MONITOR)





#### Quartz Tuning Fork as a Resonant Microphone for QEPAS





#### **Unique Properties**

- · Extremely low internal losses:
  - Q~10 000 at 1 atm
  - Q~100 000 in vacuum
- Acoustic quadrupole geometry
  - Low sensitivity to external sound
- Large dynamic range (~10<sup>6</sup>) linear from thermal noise to breakdown deformation
  - 300K noise: *x*~10<sup>-11</sup> cm
  - Breakdown:  $x \sim 10^{-2}$  cm
- Wide temperature range: from 1.6K to ~700K

#### Acoustic Micro-resonator (µR) Tubes

- Optimum inner diameter: 0.6 mm; μR-QTF gap is 25-50 μm
- Optimum mR tubes must be ~ 4.4 mm long (~\(\frac{1}{\sqrt{1}}\)/2 for sound at 32.8 kHz)
- SNR of QTF with µR tubes: <u>×30</u> (depending on gas composition and pressure)

### Motivation for Nitric Oxide Detection

- NO in medicine and biology
  - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
  - Treatment of asthma, chronic obstructive pulmonary disease (COPD) & lung rejection
- · Environmental pollutant gas monitoring
  - Ozone depletion
  - Precursor of smog and acid rain
  - NO<sub>X</sub> monitoring from automobile exhaust and power plant emissions
- Atmospheric Chemistry











### Motivation for Carbon Monoxide Detection

- CO in Medical Diagnostics
  - Hypertension and abnormality in heme metabolism
- Public Health
  - Extremely dangerous to human life even at a low concentrations. CO must be monitored at low concentration levels (<35 ppm).</li>
- Atmospheric Chemistry
  - Incomplete combustion of natural gas, fossil fuel and other carbon containing fuels.
  - Impact on atmospheric chemistry through its reaction with hydroxyl (OH) for troposphere ozone formation and changing the concentration levels of greenhouse gases (e.g. CH<sub>4</sub>).













# Motivation of H<sub>2</sub>O<sub>2</sub> Detection

- Oxidative capacity of atmosphere and balance of HO<sub>x</sub>;
- Acid rain formation & In-cloud oxidation of S(IV) to S(VI);
- · Active agent in decontamination and sterilization systems;
- H<sub>2</sub>O<sub>2</sub> in breath is a biomarker of oxidative stress;
- H<sub>2</sub>O<sub>2</sub> concentration levels in Houston have not been reported despite of atmospheric conditions, such as high humidity, high solar radiation levels, and the presence of the petrochemical industry.



 $H_2O_2$ 





|        | Molecule (Host)                                                                                                                                                       | Frequency,<br>cm <sup>-1</sup> | Pressure,<br>Torr   | NNEA,<br>cm <sup>-1</sup> W/Hz <sup>16</sup> | Power,<br>mW  | NEC (t=1s),                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|----------------------------------------------|---------------|-----------------------------|
| vis {  | Os (air)                                                                                                                                                              | 35087.70                       | 700                 | 3.0×10 <sup>-8</sup>                         | 0.8           | 1,27                        |
|        | O2 (N2)                                                                                                                                                               | 13099.30                       | 158                 | 4.74×10-7                                    | 1228          | 13                          |
|        | C2H2 (N2)*                                                                                                                                                            | 6523.88                        | 720                 | 4.1×10 <sup>-9</sup>                         | 57            | 0.03                        |
|        | NH <sub>3</sub> (N <sub>2</sub> )*                                                                                                                                    | 6528.76                        | 575                 | 3.1×10-9                                     | 60            | 0.06                        |
|        | C2H4 (N2)*                                                                                                                                                            | 6177.07                        | 715                 | 5.4×10-8                                     | 15            | 1.7                         |
|        | CH4 (N2+1.2% H2O)*                                                                                                                                                    | 6057.09                        | 760                 | 3.7×10-1                                     | 16            | 0.24                        |
| NR ≺   | N2H4                                                                                                                                                                  | 6470.00                        | 700                 | 4.1×10 <sup>-9</sup>                         | 16            | 1                           |
|        | H <sub>2</sub> S (N <sub>2</sub> )*                                                                                                                                   | 6357.63                        | 780                 | 5.6×10-9                                     | 45            | 5                           |
| 1      | HCl (N2 dry)                                                                                                                                                          | 5739.26                        | 760                 | 5.2×10-4                                     | 15            | 0.7                         |
|        | CO <sub>2</sub> (N <sub>2</sub> +1.5% H2O) *                                                                                                                          | 4991.26                        | 50                  | 1.4×10 <sup>-8</sup>                         | 4.4           | 18                          |
| }      | CH2O (N2:75% RH)*                                                                                                                                                     | 2804.90                        | 75                  | 8.7×10 <sup>-9</sup>                         | 7.2           | 0.12                        |
|        | CO (N2 +2.2% H2O)                                                                                                                                                     | 2176 28                        | 100                 | 1.4×10-7                                     | 71            | 0.002                       |
|        | CO (propylene)                                                                                                                                                        | 2196.66                        | 50                  | 7.4×10 <sup>-8</sup>                         | 6.5           | 0.14                        |
|        | N2O (air+5%SF4)                                                                                                                                                       | 2195 63                        | 50                  | 1.5×10 <sup>-8</sup>                         | 19            | 0.007                       |
| Mid-IR | C2H5OH (N2)**                                                                                                                                                         | 1934.2                         | 770                 | 2.2=10-7                                     | 10            | 90                          |
|        | NO (N2+H2O)                                                                                                                                                           | 1900.07                        | 250                 | 7.5×10-9                                     | 100           | 0.003                       |
|        | H <sub>2</sub> O <sub>2</sub>                                                                                                                                         | 1295.6                         | 150                 | 4.6×10-                                      | 100           | 12                          |
|        | C2HF5 (N2)***                                                                                                                                                         | 1208.62                        | 770                 | 7.8×10-9                                     | 6.6           | 0.009                       |
|        | NH <sub>3</sub> (N <sub>2</sub> )*                                                                                                                                    | 1046.39                        | 110                 | 1.6×10-8                                     | 20            | 0 006                       |
|        | SF6                                                                                                                                                                   | 948.62                         | 75                  | 2.7x10 <sup>-10</sup>                        | 18            | 5x10 <sup>-3</sup> (50 ppt) |
|        | Improved microresonator     Improved microresonator an     With amplitude modulation     NNEA – normalized noise equivalent concentr  NEC – noise equivalent concentr | and metal microres             | onator<br>fficient. |                                              | 18 dB oct fil | ter slope.                  |



#### Advantages & Disadvantages of Canines in Cancer Detection

#### Advantages

- Non-invasive, safe and easy sample collecting
- Relatively easy training and interpretation of dogs' indications
- Odor samples can be tested several times
- Extremely high detection sensitivity and specificity
- Potential of VOCs are useful in search, rescue and emergency applications

#### Disadvantages

- To-date a "black-box technology"
- It is a method based on earning a reward, which becomes unreliable after ~ 4 years
- Variation of sensitivity and specificity
- Re-training of dogs is not effective

Breath 2014, Torun, Prof. T. Jezierski et al., Institute of Genetics and Animal Breeding, PAS, Poland



### **Future Directions and Outlook**

- New target analytes: formaldehyde (CH<sub>2</sub>O), ethylene (C<sub>2</sub>H<sub>4</sub>), ozone (O<sub>3</sub>) and nitrate (NO<sub>3</sub>
- Ultra-compact, low cost, robust sensors (e.g. CH<sub>4</sub>, NO, CO...)
- QCL based ultra-portable atmospheric carbon isotope monitor for <sup>12</sup>CH<sub>4</sub> & <sup>13</sup>CH<sub>4</sub>
- Monitoring of broadband absorbers: acetone (C<sub>3</sub>H<sub>6</sub>O):
   MDL of 1.5 ppm with a 7mW ICL & AM, or 20ppb with a 100mW QCL @ 8.23μm; benzene (C<sub>6</sub>H<sub>6</sub>)...
- Optical power build-up cavity designs (I-QEPAS)
- THz QEPAS based sensors
- Development of trace gas sensor networks



# Potential Integration of a CW DFB- QCL and QEPAS Absorption Detection Module



## Why is THz based Trace Gas Sensing useful?



Several gas species such as HF, OH, HCN, HCl, HBr, NH<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, H<sub>2</sub>S, H<sub>2</sub>O & explosives (in the vapor phase) show strong absorption bands in the THz spectral range.

Mainly rotational levels are involved in THz absorption processes and rotational-translational (R-T) relaxation rates are up to three order of magnitude faster with respect to vibrational-translational (V-T) in the mid-infrared

QEPAS signal strongly depends on the energy relaxation rates due to the possibility to operate at low pressure, & thereby taking advantages of the typically very high QTF Q-factors.

# Why have QEPAS sensors not been developed in the THz spectral range so far?

## Standard QTFs have a very small volume

 $(\sim 0.3 \times 0.3 \times 3 \text{ mm}^3)$ 

In QEPAS sensor systems, it is critical to avoid laser illumination of the QTF, since the radiation blocked by the QTF prongs results in an undesirable non-zero background as well as a shifting fringe-like interference pattern.





Standard QTF

The standard QTF prong separation of 330  $\mu m$  is comparable with the THz wavelength which prevents the use of a QEPAS sensor architecture in the THz range unless we use large sized QTFs.

# Custom fabricated QTFs scaled in Dimensions that are ~7 & 3 times larger than standard QTFs



Standard photolithographic techniques were used to etch the custom QTF, starting from a z-cut quartz wafer. Chromium/gold contacts were deposited on both sides of the custom QTF.

Currently verification that the larger QTFs behave similar to a "standard" QTF in terms of vibrational modes and Q factor is in progress







## **Summary and Conclusions**

- Development of robust, compact, sensitive, selective mid-infrared trace gas sensor technology based on room temperature, continuous wave DFB laser diodes and high performance QCLs for environmental monitoring and medical diagnostics.
- Interband cascade and quantum cascade lasers were used in QEPAS and TDLAS based sensor platforms
- Six target trace gas species were detected with a 1 sec sampling time:
  - NO: ~5.26 μm, detection limit of 3 ppbv
  - CO: ~4.61 μm, minimum detection limit of 2 ppbv
  - SO<sub>2</sub>: ~7.24 μm, detection limit of 100 ppbv
  - CH<sub>4</sub> and N<sub>2</sub>O:  $\sim$ 7.28  $\mu$ m, detection limits of 13 and 6 ppbv, respectively
  - $H_2O_2$ : ~7.73 µm, detection limit of 75 ppb
- New target analytes: CH<sub>2</sub>O and C<sub>3</sub>H<sub>6</sub>O

