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* Motivation: Wide Range of Chemical Sensing
* Fundamentals of Laser Absorption Spectroscopy
* New laser sources and sensing technologies

= Selected Applications of Trace Gas Detection
= Detection of nitric oxide and ethanol
* Quartz Enhanced L-PAS (Freon 125, acetone & ammonia)

* Future Directions and Conclusions
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Fundamentals of Laser Absorption Spectroscopy

Wide Range of Trace Gas Sensing Applications

* Urban and Industrial Emission Measurements
s Industrial Plants
s Combustion Sources and Processes (e.g. fire detection)
= Automobile, Truck, Aircraft and Marine Emissions
* Rural Emission Measurements
s Agriculture & Forestry, Livestock
« Environmental Monitoring
= Atmospheric Chemistry
* Volcanic Emissions
* Chemical Analysis and Industrial Process Control

= Petrochemical, Semiconductor, Nuclear Safeguards,
Pharmaceutical, Metals Processing, Food & everage Industries

« Spacecraft and Planetary Surface Monitoring
= Crew Health Maintenance & Life Support

» Applications in Health and Life Sciences

* Technologies for Law Enforcement and National Security N

* Fundamental Science and Photochemistry ;
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Mid-IR Source Requirements for Laser Spectroscopy
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Key Characteristics of mid-IR QCLs and ICL Sources

* Band - structure engineered devices
{ermission wavelength 1s determined by layer thickness - MBE e MOCVDE,
mid-infrared QCLs operate (rom 3 t0 24 um

Compact, rehable, stable, long hifetime, and commercial avaitahity

*  Fabry-Perot (FP). single mode (DFB) and mult-wavelength

Spectral lunInF range in the mid-1R
4-23um for QCLs and 3-5 pm for ICLs)
* 15cm? mmg myechion cusrent control
= 10-20 cm'' using temperature control
= 265 cm ' using an external graung clement and with heterogeneous e
cascade active region design
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* High pulsed and cw powers at TEC/RT temperatures

Pulsed peak powers of 1.6 W, high temperature operation ~425K

Average power levels: 1-600 mW (cusrent wall plug n—4*s)

~ 50 mW, TEC CW DFB @ 5 and 10 um Alpes, Pnnceton,

Adtech Opucs. Maxson Technologics, Famamatsu, Dayhght

~300mW @ 8.3 pm (A IcmTechnoI Harvard)

s > 600mW (CW FP) aRT & a wail plug effictency of =3 3%, a8 n.-.|I
=150 mW (LW DFB)at 298 K (Northwestemn)

Tunable external cavity QCL based spectrometer

* Fine wavelength tuning
* PZT controlled EC-length
* PZT controlled grating angle
* QCL current control
* Motonzed coarse grating angle tuning
* Vacuum tight QCL enclosure with build-in 3D lens
positioner (TEC laser cooling + optional chilled

water cooling) @ RICE

Performance of 8.4 um EC-QCL Spectroscopic Source
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Widely Tunable, CW, TEC
Quantum Cascade Lasers

Wide Wavelength Tuning of a 5.3pm EC-QCL
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Quartz Enhanced
Photoacoustic Spectroscopy




From conventional PAS to QEPAS
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Quartz Tuning Fork (TF) as a Resonant Microphone

* Resonant frequency (=32 8 kHz
* Imtrinsically high Q factor Q,, 0, — 125 000,
(2,,~10 000 at ambient conditions.

* Piezoclectric: sequires no transducer
* Miniature size
* Mass produced for clocks — low cost

Absorption Detection Module for QEPAS based Gas Sensor

Comparative Size of Absorption Detection Modules (ADM)

©0.41 mm |

10 mm

Excitation
laser beam

Quartz tuning
fork electrodes

GYRICE

= Resomant frequency £~ 328 kiiz

* Imrmsxally high Q factor O, _ = 125 000
=10 000 for amincnt conditnms

* Preanclectne requires o trmnsducer

*  Mouturc sue

* Muss produced for watches & clocks - Jow aost

Optical multmpass cell (100 m)
=70 em, I°-. em'

Resonant photoacoustic cell {1000 Hz)
#-60 cm, 1°-50 cm?®

QEPAS spectrophone: a5
I~1 cm. 1005 em’ %&

Alignment-free QEPAS Absorption Detection Module

Quartz Tuning Fork. Acouslic Mcro Resonatar
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Merits of QE Laser-PAS based Trace Gas Detection

* High sensitivity (ppm to ppb gas concentration
levels) and excellent dynamic range

* Immune to ambient and flow acoustic noise,
laser noise and etalon effects

e Significant reduction of sample volume (< 1
mm?)

* Applicable over a wide range of pressures

* Temperature, pressure and humidity insensitive

* Rugged and low cost (compared to other optical
sensor architectures) s
RICE




Trace Gas Sensing Examples

Motivation for NH, Detection

= Monitoring of gas separation processes
* Spacecraft related gas monitoring

* Monitoring NH, concentrations in the exhaust
stream of NO, removal systems based on selective
catalytic reduction (SCR) techniques

* Semiconductor process monitoring & control

* Monitoring of industrial refrigeration facilities

* Pollutant gas monitoring

* Atmospheric chemistry

* Medical diagnostics (kidney & liver dysfunctions)

%
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Infrared NH; Absorption Spectra

QEPAS based Gas Sensor Architecture
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Calibration and Linearity of QEPAS based NH, Sensor
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Motivation for Nitric Oxide Detection

* Atmospheric Chemistry

« Environmental pollutant gas monitoring

« NO, monitoring from automobile exhaust and
power plant emissions

» Precursor of smog and acid rain
* Industrial process control

= Formation of oxynitride gates in CMOS Devices
* NO in medicine and biology

* Important signaling molecule in physiological
processes in humans and mammals (1998 Nobel
Prize in Physiology/Medicine)

* Treatment of asthma, COPD, acute lung rejection
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High resolution spectroscopy with a 5.3um EC-QCL

EC-QCL tuning ras
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Accessto NOQW2) | £

transition at 1875.8 cm!

for Faraday rotation
spectroscopy

* Mode hop free scan of up to ~2.5 cm* with a resolution <0.001cm"!

In colaorsacn we

(30MHz) can be performed anywhere within the tuning range
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High resolution EC-QCL based QEPAS

80
4.2% NO in N, at 600 Torr

= 1TRAN 2008 (600 Tar path tem|
- taTRAY 2008 (8 Tam pah fem.

* QEPAS messusmment

ko g External Amplitude
| e Modulation:
f

8 8 &

chopper at f=~32kHz
*No chirp associated with the laser
curent modulation
004 *High resolution mode-hop-free
tuning is possible

016 ‘ég *QTF is used as a mechanical

8 8

0.00

24 19028 19032 18036 10040 19044
Wavenumber [cm” |

Normalized QEPAS Amplilude {mV/mWw]
a
o 3

]

e YRICE

Biomarkers Present in Exhaled Human Breath
More than 400 different molecules in breath;
many with well defined biochemical pathways

BROADBAND
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Ethane ol \Lipid peroxidation and oxidative stress
et ol ) Gut bacterta
{Ethylane pob oxidative stress, cancer
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Hydregen e Gut bacleria
— | ne PR Cholesterol s
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Tercnce Rishy, Johns Hopkins University

QCL based Quartz-Enhanced Photoacoustic Gas Sensor

QEPAS characteristics:

ToTTTT T T

* High senshivity (ppm Lo ppb)

* Exco¥ent dynamic range

* Immune to envronmental noise

* Ultrs-small sample volume [< 1 mm)

* Sensitivity is kmiled by the fundamental
thermal TF noise

* Compect, rugged and low cost

* Potential for trace gas sensor networks

r

Gas handling system

%IRICE

Design of an EC-QCL Based Remote Sensing System

| e canimd

« An upgraded version of a four-
laser pulsed QCL system

+ The optical set-up, electronics
and control software modified for
CW-QCL operation

« First tests performed with a DFB
CW-QCL operating at ~5.5um




Outdoor Open Path Measurements
(influence of Atmospheric Transmission)

High resolution spectroscopy with a 5.3um EC-QCL
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EC-QCL allows selection of
an absorption line with:

* Higher Line Intensity
* Lower Spectral Interference
» Higher Atmospheric Transmission
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Monitoring of broadband absorbers

QEPAS based Freon 125 and Acetone concentration
measurements with a tunable 8.4 um CW EC-QCL

* Freon 125 (C,HFg)
= Refrigerant (leak detection)

® Safe simulant for toxic chemicals, e.g.
chemical warfare agents

* Acetone (CH,COCHj,)
8 Recognized biomarker for diabetes
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QEPAS concentration measurement of
a Freon 125 and acelons mexture

QEPAS concentration messurement of
Froon 125 (Sppm mixture in N,)
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* Minimum detection limit (1o} of

~4.5 ppb was oblained for * Wide tunability enables excellent

Freon 125 with an average laser baun : c:;::ée:xwty for broad
power of 6.6 mW
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Future of Chemical Trace Gas Sensing

QEPAS Performance for 12 Trace Gas Species (Feb ‘08)
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New design of fast broadly tunable EC-QCLs (2008)

z

*New optical configuration
Folded cavity (configuration #1)

*Fast tuning capabilities:

® Coarse Broadband Scanning

I (~55 cm @5um ) up to 5 KHz
s o ios <10Hz)
= = High resolution mode-hop
= free tuning (~3.2 cm @5um )

up to 5 KHz

(comparad o available technology 100-200 Hz)

Patent pending, 0. Wysockl, F. K. Tittel, 2007
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Wireless Sensor Networks for Gas Sensing

* Each point called “mote”

v —_— « Advantages?
\ o * Spatial resolution

4 = Measure fluxes
* What is needed?
’ —_— = Low cost
1 = Ultra miniature

* Low power
* Replicable

= Autonomy

To Intemet via
Base-station "
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Miniature QEPAS CO, sensor (A=2um) v2.0 boards

@ |

+ Small size

* Relatively low cost

» High efficiency switching power supplies

= PWM Peltier cooler driver

= 0 2W control system power consumption

» Detection sensitivity* of CO, 110 ppm with 1sec. lock-in TC

* Over 107 impr in y is p @4.2pm
*G Wysochl, A A Kosterev. and F K. Tisel mmdummﬂmm-mwm %’iR«lCE
£ nh Photnecoushc Detecion of CO. st ) = 2 wm” cy B 85_301.306

Miniature LAS CO, sensor (A=2.7um) boards

1.3Ah Li-lon Battery
{Attached to bottom)

§<* Laser Driver Board

Summary & Future Directions of QCL based Gas Sensor Technology

+  Quantum and Interband Cascade Laser based Trace Gas Sensors
= Compact, tunable, and robust
= High sensitivity (<10-) and selectivity (3 to 500 MHz)
* Capable of fast data acquisition and analysis
* Detected 13 trace gases to date: NH,, CH,, N,0O, CO,, CO, NO, H,0, COS, C.H,,
H,CO. SO,,C,H,0H, C,HF, and several lso(oplc species of C, O, N and H.
+  New Applications of Trace Gas Detection
= Environmental Monitoring (urban quality - H,CO and. isotopic ratio measurements
of CO, and CH,, fire detection and quantification of engine exhausts)
« Industrial process control and chemical analysis ( NO, NH,, H,0, and H,S)
= Medical & biomedical diagnostics (NO, NH,, N,O, H,CO and CH,COCH,)
¢ Hand-held sensors and sensor network  technologies (CO,)
+  Future Directions and Collaborations
= Improvements of the existing sensing technologies using novel, thermoelectricaily
cooled, cw, high power, and broadly wavelength tunable mid-[R interband and
intersubband quantum cascade lasers
Nc»\ lications enabled by novel bmadly wavelength tunable quantum cascade
nscd on hclcmgcncous EC-QCL (i.e
t in panticular VOCs, HCs and multi-species detection)
= Dcvclapmcm of optically gas sensor networks based an QEPAS and LAS
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