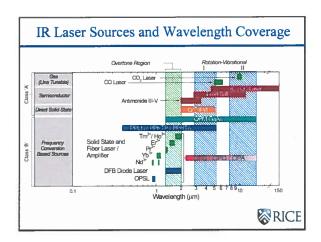
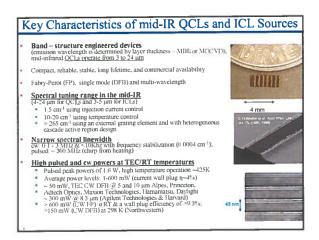
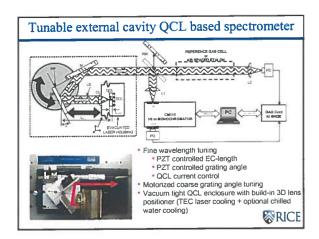
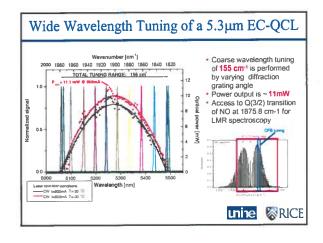

Wide Range of Trace Gas Sensing Applications

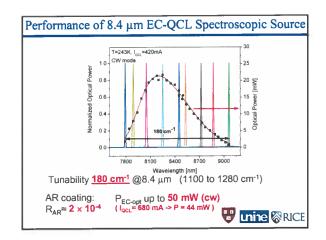

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
 - Automobile, Truck, Aircraft and Marine Emissions
- · Rural Emission Measurements
- Agriculture & Forestry, Livestock
- · Environmental Monitoring
- Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- · Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- · Applications in Health and Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

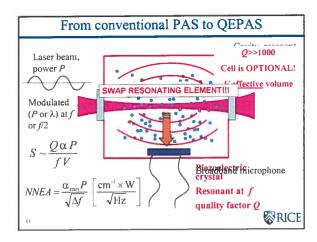


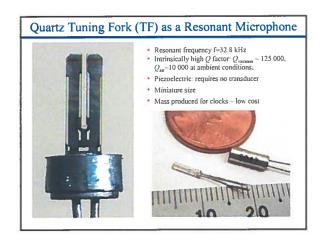
Fundamentals of Laser Absorption Spectroscopy Key Requirements: Sensitivity, specificity, rapid data acquisition and multi-species detection Optimum Molecular Absorbing Transition Overtone or Combination Bands (NIR) Fundamental Absorption Bands (MID-IR) $\iota(v){=}\iota_0^-\circ \neg u(v)^-P_+^-L$ - absorption coefficient [cm⁺ atm⁺]; L – path length [cm] cquency [cm⁺]; P_a-partial pressure [atm] Lone Optical Pathlengths Multipass Absorption Cell Cavity Enhanced, Cavity Ringdown & H(v) Intracavity Spectroscopy Open Path Monitoring (with retro-(x(v) Evanescent Field Monitoring (fibers & hollow waveguides) $a(v) = C S(T) g(v - v_a)$ Spectroscopic Detection Schemes C - total number of molecules of absorbing gas atm Balanced Detection S - molecular line intensity [cm molecule*] Zero-air Subtraction Photoacoustic Spectro g(v- v.) - normalized spectral lineshape function [cm], **WRICE** Gaussian, Lorentzian, Voigt)

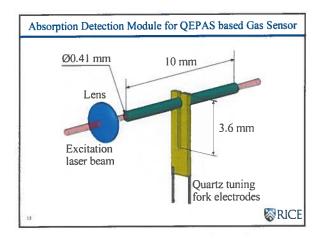


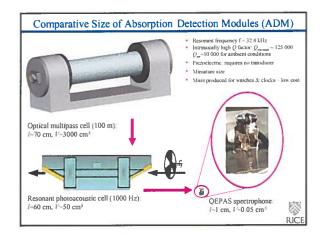





Widely Tunable, CW, TEC Quantum Cascade Lasers

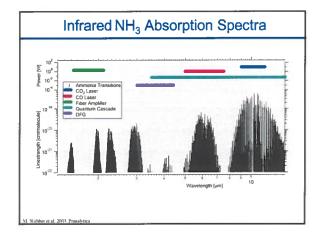


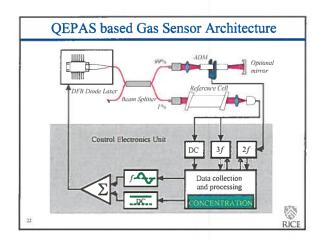


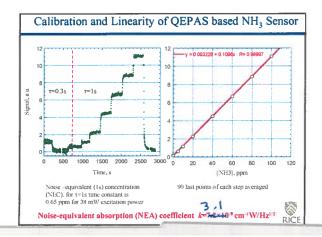


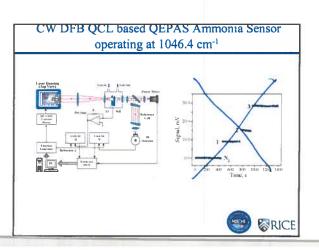
Quartz Enhanced
Photoacoustic Spectroscopy

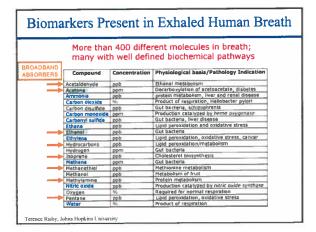
Merits of QE Laser-PAS based Trace Gas Detection

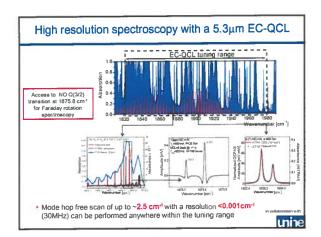

- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Immune to ambient and flow acoustic noise, laser noise and etalon effects
- Significant reduction of sample volume (< 1 mm³)
- · Applicable over a wide range of pressures
- · Temperature, pressure and humidity insensitive
- Rugged and low cost (compared to other optical sensor architectures)

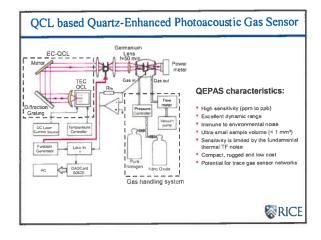

Trace Gas Sensing Examples

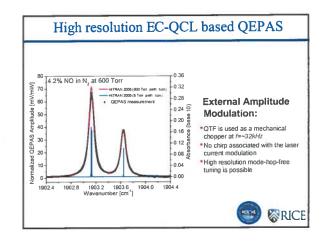

Motivation for NH₃ Detection

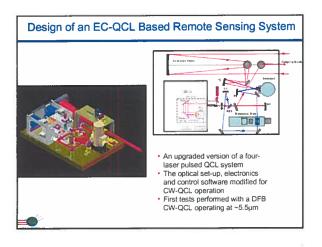

- Monitoring of gas separation processes
- · Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- · Monitoring of industrial refrigeration facilities
- · Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver dysfunctions)

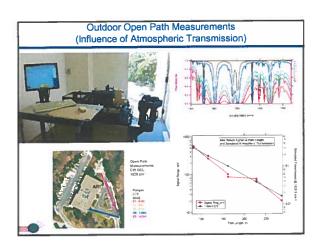

Motivation for Nitric Oxide Detection

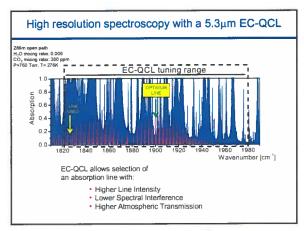

· Atmospheric Chemistry


 $y_{i} = y_{i} = \overline{X} = X$


- · Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- · Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection

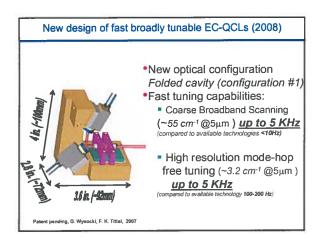


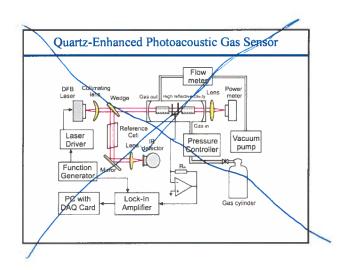


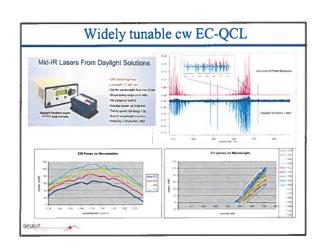


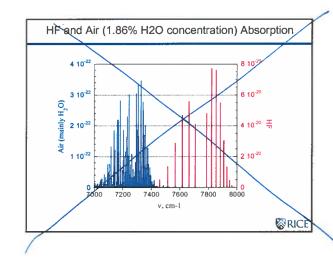
not seisted !

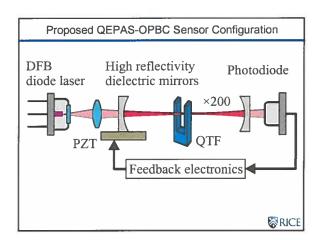
Monitoring of broadband absorbers

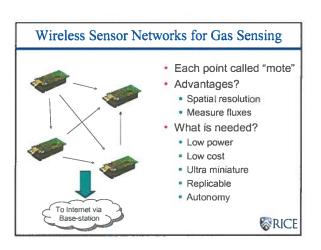

- Freon 125 (C₂HF₅)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals, e.g. chemical warfare agents
- Acetone (CH₃COCH₃)
 - Recognized biomarker for diabetes



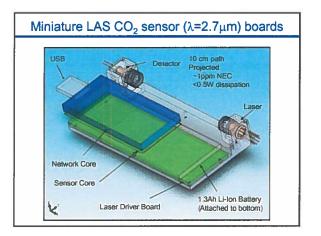

measurements with a tunal	nd Acetone concentration ole 8.4 μm CW EC-QCL
OEPAS concentration measurement of Freen 125 (5ppm mixture in N _s) 12 12 13 14 15 15 15 15 15 15 15 15 15	OEPAS concentration measurement of a Freon 125 and acetone muture 1.2 Acetone 123 - Acetone Freen 123 retrieved Acetone reference Acetone reference 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.


Molecule (Host)	Frequency, cm ⁻¹	Pressure, Terr	NNEA, rm*W/Hz*	Pawer, mW	NEC (7*4s
II ₆ O (N ₂)**	7306.73	60	1.9×10	9.5	0.09
HCN (alr: 50% RH)*	6539 11	60	43=10	30	0.16
CaHa (Na)*	6523.88	730	4.1×16	57	0.03
NH ₂ (N ₂)*	6538.76	575	3.1×10	60	0.06
Call, (Na)*	6177.07	715	5.4×10°	15	1.7
CH ₄ (N ₂)*	6057.09	950	2.9×10 ⁻⁴	13.7	2.1
CO2 (breath - 100% RII)	6361.25	150	E.2=10"	45	40
II ₆ S (N ₁)*	6337.63	780	5.6=10	45	0.20
CO ₂ (N ₁ +1.3% H10)	4991 26	50	1.4+10(*	11	18
CH ₂ O (N ₂ :75% RH)*	2804.90	75	8.7×10*	7.2	0.12
CO (S ₂)	2196.66	50	5.3×10°	13	0.5
C() (prop) lene)	2196.66	50	7.4×10*	6.5	0.14
N ₂ () (alr+5%5F ₆)	2195.63	50	1.5×10*	19	0.007
C ₂ H ₂ OH (N ₂)**	1934.2	770	2.2=10	10	90
CaHFa (Na)***	1208.62	770	7.8=10	6.6	0.009
NH ₁ (N ₁)*	1046.39	110	1.6×16	20	0.006


Future of Chemical Trace Gas Sensing



Miniature QEPAS CO₂ sensor (λ =2 μ m) v2.0 boards



. . . .

- Small size Relatively low cost High efficiency switching power supplies PWM Peltier cooler driver

- 0.2W control system power consumption Detection sensitivity* of CO_2 110 ppm with 1sec. lock-in TC Over 10^3 improvement in sensitivity is possible @4.2 μ m

Summary & Future Directions of QCL based Gas Sensor Technology

- Quantum and Interband Cascade Laser based Trace Gas Sensors
 Compact, tunable, and robust

 - High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz) Capable of fast data acquisition and analysis
- Capable of fast data acquisition and analysis
 Detected 13 trace gases to date: NH₃, CH₃, N₂O, CO₂, CO, NO, H₃O, COS, C₂H₄, H₃CO, SO₂, C₃H₃OH, C₂HF₃ and several isotopic species of C, O, N and H.
 New Applications of Trace Gas Detection
 Environmental Monitoring (urban quality H₂CO and, isotopic ratio measurements of CO₂ and CH₄, fire detection and quantification of engine exhausts)
 Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S)
 Medical & biomedical diagnostics (NO, NH₃, N₂O, H₂CO and CH₃COCH₃)
 Hand-held sensors and sensor network technologies (CO₂)
 Future Directions and Collaborations
 Improvements of the existing sensing technologies using novel, thermoelectrically

- Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR interband and intersubband quantum cascade lasers
- New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e sensitive concentration measurement of broadband absorbers, in particular VOCs. HCs and multi-species detection)
 Development of optically gas sensor networks based on QEPAS and LAS

