Wide Range of Trace Gas Sensing Applications - Urban and Industrial Emission Measurements - Industrial Plants - Combustion Sources and Processes (e.g. fire detection) - Automobile, Truck, Aircraft and Marine Emissions - · Rural Emission Measurements - Agriculture & Forestry, Livestock - · Environmental Monitoring - Atmospheric Chemistry - Volcanic Emissions - Chemical Analysis and Industrial Process Control - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries - · Spacecraft and Planetary Surface Monitoring - Crew Health Maintenance & Life Support - · Applications in Health and Life Sciences - Technologies for Law Enforcement and National Security - Fundamental Science and Photochemistry #### Fundamentals of Laser Absorption Spectroscopy Key Requirements: Sensitivity, specificity, rapid data acquisition and multi-species detection Optimum Molecular Absorbing Transition Overtone or Combination Bands (NIR) Fundamental Absorption Bands (MID-IR) $\iota(v){=}\iota_0^-\circ \neg u(v)^-P_+^-L$ - absorption coefficient [cm⁺ atm⁺]; L – path length [cm] cquency [cm⁺]; P_a-partial pressure [atm] Lone Optical Pathlengths Multipass Absorption Cell Cavity Enhanced, Cavity Ringdown & H(v) Intracavity Spectroscopy Open Path Monitoring (with retro-(x(v) Evanescent Field Monitoring (fibers & hollow waveguides) $a(v) = C S(T) g(v - v_a)$ Spectroscopic Detection Schemes C - total number of molecules of absorbing gas atm Balanced Detection S - molecular line intensity [cm molecule*] Zero-air Subtraction Photoacoustic Spectro g(v- v.) - normalized spectral lineshape function [cm], **WRICE** Gaussian, Lorentzian, Voigt) Widely Tunable, CW, TEC Quantum Cascade Lasers Quartz Enhanced Photoacoustic Spectroscopy #### Merits of QE Laser-PAS based Trace Gas Detection - High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range - Immune to ambient and flow acoustic noise, laser noise and etalon effects - Significant reduction of sample volume (< 1 mm³) - · Applicable over a wide range of pressures - · Temperature, pressure and humidity insensitive - Rugged and low cost (compared to other optical sensor architectures) ### Trace Gas Sensing Examples #### Motivation for NH₃ Detection - Monitoring of gas separation processes - · Spacecraft related gas monitoring - Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques - Semiconductor process monitoring & control - · Monitoring of industrial refrigeration facilities - · Pollutant gas monitoring - Atmospheric chemistry - Medical diagnostics (kidney & liver dysfunctions) #### Motivation for Nitric Oxide Detection · Atmospheric Chemistry $y_{i} = y_{i} = \overline{X} = X$ - · Environmental pollutant gas monitoring - NO_x monitoring from automobile exhaust and power plant emissions - Precursor of smog and acid rain - · Industrial process control - Formation of oxynitride gates in CMOS Devices - NO in medicine and biology - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine) - Treatment of asthma, COPD, acute lung rejection # not seisted ! ## Monitoring of broadband absorbers - Freon 125 (C₂HF₅) - Refrigerant (leak detection) - Safe simulant for toxic chemicals, e.g. chemical warfare agents - Acetone (CH₃COCH₃) - Recognized biomarker for diabetes | measurements with a tunal | nd Acetone concentration
ole 8.4 μm CW EC-QCL | |--|---| | OEPAS concentration measurement of Freen 125 (5ppm mixture in N _s) 12 12 13 14 15 15 15 15 15 15 15 15 15 | OEPAS concentration measurement of a Freon 125 and acetone muture 1.2 Acetone 123 - Acetone Freen 123 retrieved Acetone reference Acetone reference 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. | | Molecule (Host) | Frequency,
cm ⁻¹ | Pressure,
Terr | NNEA,
rm*W/Hz* | Pawer,
mW | NEC (7*4s | |--|--------------------------------|-------------------|----------------------|--------------|-----------| | II ₆ O (N ₂)** | 7306.73 | 60 | 1.9×10 | 9.5 | 0.09 | | HCN (alr: 50% RH)* | 6539 11 | 60 | 43=10 | 30 | 0.16 | | CaHa (Na)* | 6523.88 | 730 | 4.1×16 | 57 | 0.03 | | NH ₂ (N ₂)* | 6538.76 | 575 | 3.1×10 | 60 | 0.06 | | Call, (Na)* | 6177.07 | 715 | 5.4×10° | 15 | 1.7 | | CH ₄ (N ₂)* | 6057.09 | 950 | 2.9×10 ⁻⁴ | 13.7 | 2.1 | | CO2 (breath - 100% RII) | 6361.25 | 150 | E.2=10" | 45 | 40 | | II ₆ S (N ₁)* | 6337.63 | 780 | 5.6=10 | 45 | 0.20 | | CO ₂ (N ₁ +1.3% H10) | 4991 26 | 50 | 1.4+10(* | 11 | 18 | | CH ₂ O (N ₂ :75% RH)* | 2804.90 | 75 | 8.7×10* | 7.2 | 0.12 | | CO (S ₂) | 2196.66 | 50 | 5.3×10° | 13 | 0.5 | | C() (prop) lene) | 2196.66 | 50 | 7.4×10* | 6.5 | 0.14 | | N ₂ () (alr+5%5F ₆) | 2195.63 | 50 | 1.5×10* | 19 | 0.007 | | C ₂ H ₂ OH (N ₂)** | 1934.2 | 770 | 2.2=10 | 10 | 90 | | CaHFa (Na)*** | 1208.62 | 770 | 7.8=10 | 6.6 | 0.009 | | NH ₁ (N ₁)* | 1046.39 | 110 | 1.6×16 | 20 | 0.006 | Future of Chemical Trace Gas Sensing #### Miniature QEPAS CO₂ sensor (λ =2 μ m) v2.0 boards - Small size Relatively low cost High efficiency switching power supplies PWM Peltier cooler driver - 0.2W control system power consumption Detection sensitivity* of CO_2 110 ppm with 1sec. lock-in TC Over 10^3 improvement in sensitivity is possible @4.2 μ m #### Summary & Future Directions of QCL based Gas Sensor Technology - Quantum and Interband Cascade Laser based Trace Gas Sensors Compact, tunable, and robust - High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz) Capable of fast data acquisition and analysis - Capable of fast data acquisition and analysis Detected 13 trace gases to date: NH₃, CH₃, N₂O, CO₂, CO, NO, H₃O, COS, C₂H₄, H₃CO, SO₂, C₃H₃OH, C₂HF₃ and several isotopic species of C, O, N and H. New Applications of Trace Gas Detection Environmental Monitoring (urban quality H₂CO and, isotopic ratio measurements of CO₂ and CH₄, fire detection and quantification of engine exhausts) Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S) Medical & biomedical diagnostics (NO, NH₃, N₂O, H₂CO and CH₃COCH₃) Hand-held sensors and sensor network technologies (CO₂) Future Directions and Collaborations Improvements of the existing sensing technologies using novel, thermoelectrically - Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR interband and intersubband quantum cascade lasers - New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e sensitive concentration measurement of broadband absorbers, in particular VOCs. HCs and multi-species detection) Development of optically gas sensor networks based on QEPAS and LAS