Passively Q-switched GdVO₄/Nd:GdVO₄ and YVO₄/Nd:YVO₄ lasers using continuous-grown composite crystals using 879 nm direct pumping

Xin Yu¹, Yufei Ma^{1,2}*, Frank K. Tittel², Xudong Li¹

¹National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China ² Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA E-mail address: Yufei.Ma@rice.edu

Abstract: Passively Q-switched $GdVO_4/Nd:GdVO_4$ and $YVO_4/Nd:YVO_4$ laser performance using direct 879 nm pumping was demonstrated for the first time., $YVO_4/Nd:YVO_4$ compared with $GdVO_4/Nd:GdVO_4$ is a more favorable gain medium if higher repetition rates are required. **OCIS codes:** 140.3480, 140.3540, 140.3580, 140.6810

1. Introduction

Q-switched lasers with high repetition rate are widely used in numerous applications such as laser lidar, remote sensing, micro-machining, and microsurgery [1]. Passive Q-switching techniques have the advantages of lower cost, compactness and simplicity since they do not require external control. Neodymium ion-hosted crystals such as Nd:YAG, Nd:GdVO₄ and Nd:YVO₄ have been widely employed to build compact, high efficiency laser-diode pumped solid-state lasers in the near-infrared region. Both Nd:GVO₄ and Nd:YVO₄ crystals have excellent physical and optical properties. Nd:GVO₄ and Nd:YVO₄ compared with Nd:YAG, both have larger stimulated emission cross sections and moderate fluorescent lifetimes. The stimulated emission cross section at 1.06 μ m of Nd:GVO₄ (10.3×10⁻¹⁹cm²) and Nd:YVO₄ (14.1×10⁻¹⁹cm²) are 4.5 and 6.1 times larger, respectively, than that of Nd:YAG (2.3×10⁻¹⁹cm²) [2,3]. The fluorescent lifetime of the ⁴F_{3/2} level is 90 µs for Nd:GdVO₄ and Nd:YVO₄ is < 2.5 times that of Nd:YAG (230 µs) [4].

Both theoretical and experimental results have shown that thermal lensing effects of laser crystals result in a decrease of laser cavity stability and alter the TEM_{00} mode spot size, which impacts the performance of passively Q-switched lasers [5]. In this paper, for the first time to the best of our knowledge, we studied the passively Q-switched laser properties of continuous-grown composite $GdVO_4/Nd:GdVO_4$ and $YVO_4/Nd:YVO_4$ crystals using direct pumping. The performance of passively Q-switched $GdVO_4/Nd:GdVO_4$ and $YVO_4/Nd:YVO_4$ lasers were investigated by employing $Cr^{4+}:YAG$ crystal as the saturable absorber.

2. Theory analysis

The repetition rate, f, for a passively Q-switched laser can be derived from the rate equations [5]

 $f = \frac{1}{-\tau \cdot \ln(1 + \frac{\ln(T_0^2 R_1 R_2)}{2\sigma l \eta \tau \alpha I_2})},$ (1)

where τ is the fluorescence lifetime, T_0 is the initial transmissivity of the saturable absorber, σ is the stimulated emission cross section of the gain medium, l is the length of the cavity, α is the absorption coefficient, I_p is the incident pump intensity (in the number of photons per second and per surface unit), and R_1 , R_2 are the reflection coefficients of the two respective cavity mirrors, η is an overlap efficiency factor (OEF) that represents the mode matching degree between the pump and the cavity beams as defined in the Ref. [6]

$$\eta = \frac{\left[\iiint_{\text{active}} \varepsilon(x, y, z) r(x, y, z) dv \right]^2}{\iiint_{\text{active}} \varepsilon(x, y, z)^2 r(x, y, z) dv},$$
(2)

where r(x, y, z) and $\varepsilon(x, y, z)$ are the normalized intensity distribution of pump beam and cavity beam respectively. The overlap efficiency factor varies with the pump beam waist radius ω_{p0} and its location z_0 where z_0 is the distance between the incident face of the crystal and the pump beam waist spot in the crystal.

3. Experimental setup

The experimental configuration of passively Q-switched $GdVO_4/Nd:GdVO_4$ and $YVO_4/Nd:YVO_4$ lasers using 879 nm laser-diode end-pumping is shown in Fig. 1. The dimensions of composite $GdVO_4/Nd:GdVO_4$ and

 $YVO_4/Nd:YVO_4$ crystals were $3\times3\times10$ mm³ respectively, and the undoped caps were 2 mm long. The composite crystal was wrapped with indium foil and placed into water-cooled copper heat sink. Two plano-plano mirrors were used to construct the laser cavity. The output coupler M₂ had a transmissivity of 35% at 1064 nm. The saturatable absorber Cr⁴⁺:YAG crystal has an initial transmission of 80% at 1064 nm. The length of l_1 was ~ 5 mm and the length, l_3 was ~ 45 mm. For such a laser architechture, the total cavity length was ~ 60 mm.

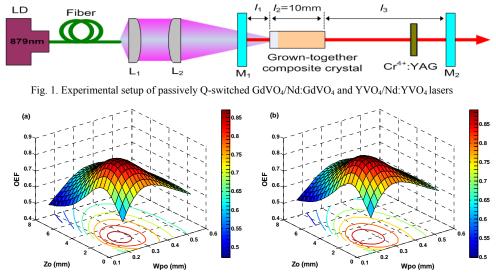


Fig. 2. The overlap efficiency factor (OEF) varies with the pump beam waist radius ω_{p0} and the location of pump waist spot z_0 : (a) GdVO₄/Nd:GdVO₄ laser; (b) YVO₄/Nd:YVO₄ laser

The numerical results based on Eq. (2) of the overlap efficiency factor for our experimental setup with an incident pump power of 10 W are shown in Fig 2. The numerical results for GdVO₄/Nd:GdVO₄ and YVO₄/Nd:YVO₄ lasers are shown in Fig.2 (a) and Fig. 2(b), respectively. The highest value of overlap efficiency factor 87.1% for GdVO₄/Nd:GdVO₄ laser and 88.6% for YVO₄/Nd:YVO₄ laser was obtained when the LD pump beam waist radius ω_{p0} is ~ 0.265 mm and the location of pump waist spot z_0 is 2.5 mm. By adjusting the two coupling lenses L₁ and L₂, the pump beam was fixed at ω_{p0} =0.265 mm and z_0 =2.5 mm in the experiments.

4. Results and discussions

As shown in Fig. 3, the repetition rate increased with increasing of the incident pump power. For an incident pump power of 10W, the maximum repetition rate were 121 kHz and 218 kHz for GdVO₄/Nd:GdVO₄ and YVO_4/Nd : YVO_4 lasers, respectively. Using Eq. (1) and Eq. (2), we calculated the theoretical repetition rates for various incident pump powers of GdVO₄/Nd:GdVO₄ and YVO₄/Nd:YVO₄ lasers, respectively. The repetition rate for a YVO_4/Nd : YVO_4 laser was higher than that of a $GdVO_4/Nd$: $GdVO_4$ laser. According to Eq. (1), three possible reasons may contribute to this result. First, the stimulated emission cross section σ of YVO₄/Nd:YVO₄ $(14.1 \times 10^{-19} \text{ cm}^2)$ is higher than that of GdVO₄/Nd:GdVO₄ ($10.3 \times 10^{-19} \text{ cm}^2$). Second, the measured absorption coefficient α of YVO₄/Nd:YVO₄ (0.26mm⁻¹) is higher than that of GdVO₄/Nd:GdVO₄ (0.24mm⁻¹). Third, as shown in Fig.4, the η (OEF) of the YVO₄/Nd:YVO₄ laser is higher than that of the GdVO₄/Nd:GdVO₄ laser. The thermal conductivity is 10.5W/m·K and 12.1W/m·K for Nd:GdVO4 and Nd:YVO4, respectively [7]. This high thermal conductivity is effective for heat conduction which is advantageous for minimizing thermal lens effects and improving the mode matching degree. As shown in Fig.4, comparing a non-composite crystal, a composite crystal produced weaker thermal lensing effects and higher overlap efficiency factors under the same conditions owing to the undoped end acting as an effective heat diffuser. Therefore, it can be predicted that the laser with the composite crystal will have a higher repetition rate and superior beam quality in comparison to that of a non-composite crystal laser.

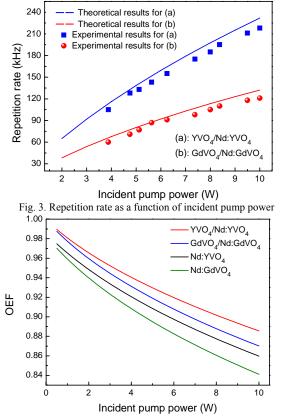


Fig. 4. The overlap efficiency factor (OEF) as a function of incident pump power

5. Conclusions

A comparison of the performance of passively Q-switched laser properties of continuous-grown composite $GdVO_4/Nd:GdVO_4$ and $YVO_4/Nd:YVO_4$ crystals operated at 1.06 µm using direct 879 nm diode laser pumping was demonstrated. Continuous-grown composite crystals and direct pumping were proved to be effective methods to reduce the thermal lens effect. $YVO_4/Nd:YVO_4$ compared with $GdVO_4/Nd:GdVO_4$ is a more effective gain medium due to its physical and optical properties (higher stimulated emission cross section and absorption coefficient) when higher repetition rates are required.

6. References

- Hsiao-HuaWu, Shu-Fen Chen and Chi-Hung Cheng, "Passive Q-switching of a diode-pumped a-cut Nd:YVO₄ laser with Cr⁴⁺:YAG saturable absorber in a plano-concave cavity," J. Opt. A: Pure Appl. Op. 9, 376-379 (2007)
- [2] Yoichi Sato and Takunori Taira, "Comparative Study on the Spectroscopic Properties of Nd:GdVO₄ and Nd:YVO₄ with Hybrid Process," IEEE J. Sel. Top Quant. 11, 613-620 (2005)
- [3] Alexandra Rapaport, Shengzhi Zhao, Guohua Xiao, Andrew Howard, and Michael Bass, "Temperature dependence of the 1.06-µm stimulated emission cross section of neodymium in YAG and in GSGG," Appl. Optics 41, 7052-7057 (2002)
- [4] S. Singh, R. G. Smith, and L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd³⁺ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974)
- [5] Sebastien Forget, Frederic Druon, Francois Balembois, Patrick Georges, Nicolas Landru, Jean-Philippe Fève, Jiali Lin, Zhiming Weng, "Passively Q-switched diode-pumped Cr⁴⁺:YAG/Nd³⁺:GdVO₄ monolithic microchip laser," Opt. Commun. 259, 816-819 (2006)
- [6] Y.F. Chen, T.M. Huang, C.F. Kao, C.L. Wang, and S.C. Wang, "Influence of Thermal Effect on Output Power Optimization in Fiber-Coupled Laser-Diode End-Pumped Lasers," IEEE J. Quantum Electron. 33, 1424–1429 (1997)
- [7] Y. Sato, and T. Taira, "The studies of thermal conductivity in GdVO₄, YVO₄, and Y3Al5O₁₂ measured by quasione dimensional flash method," Opt. Express **14**, 10528–10536 (2006)