

Recent Advances and Applications of Semiconductor Laser based Gas Sensor Technology

F.K. Tittel, Yu. Bakhirkin, A.A. Kosterev M.McCurdy, S.G. So, G. Wysocki & R.F.Curl Rice Quantum Institute, Rice University, Houston, TX http://ece.rice.edu/lasersci/

OUTLINE

SRNL

Aiken,SC Dec 5, 2005

- Motivation: Wide Range of Chemical Sensing
- Fundamentals of Laser Absorption Spectroscopy
- Selected Applications of Trace Gas Detection
 - LAS with a Multipass absorption Cell (CO, CO2, NO)
 - OA-ICOS CO and NO based Sensor Technology
 - •Quartz enhanced Laser-PAS
- Conclusions and Outlook

Motivation: Wide Range of Gas Sensing Applications

Urban and Industrial Emission Measurements

- Industrial Plants
- Combustion Sources and Processes (eg. early fire detection)
- Automobile and Aircraft Emissions

Rural Emission Measurements

- Agriculture and Animal Facilities
- Environmental Gas Monitoring
 - Atmospheric Chemistry (eg ecosystems and airborne)
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Chemical, Pharmaceutical, Food & Semiconductor Industry
 - Toxic Industrial Chemical Detection
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Advanced Human Life Support Technology
- Biomedical and Clinical Diagnostics (eg. breath analysis)
- Forensic Science and Security
- Fundamental Science and Photochemistry

Trace Gas Monitoring in a Petrochemical Plant

Worldwide Megadirty Mega Cities

	Population, m		Sulphur	Particulate	Lead	Carbon	Nitrogen	Ozone
	1990, ext.	2000, proj.	dioxide	matter		monoxide	dioxide	
Bangkok	7.16	10.26	0	•	0	0	0	0
Beijing	9.74	11.47		•	0	-	0	0
Bombay	11.13	15.43	0	•	0	0	0	_
Buenos Aires	11.58	13.05	_	0	0	_	_	_
Cairo	9.08	11.77	_	•	•	0	_	_
Calcutta	11.83	15.94	0	•	0	_	0	_
Delhi	8.62	12.77	0	•	0	0	0	_
Jakarta	9.42	13.23	0	•	0	0	0	0
Karachi	7.67	11.57	0	•	•	-	_	_
London	10.57	10.79	0	0	0	0	0	0
Los Angeles	10.47	10.91	0	0	0	0	0	•
Manila	8.40	11.48	0	•	0	-	_	_
Mexico City	19.37	24.44	•	•	0	•	0	•
Moscow	9.39	10.11	-	0	0	0	0	_
New York	15.65	16.10	0	0	0	0	0	0
Rio de Janeiro	11.12	13.00	0	0	0	0	_	_
Sao Paolo	18.42	23.60	0	0	0	0	0	•
Seoul	11.33	12.97	•	•	0	0	0	0
Shanghai	13.30	14.69	0	•	_	_	_	_
Tokyo	20.52	21.32	0	0	_	0	0	•
Source: United Nations		High pollution	∅ Modera	ite to heavy pollu	tior() I	Low pollution	- No data avail	able

Megacity Air Pollution: Houston, TX

NASA-JSC Human-Rated Simulation Chamber

Existing Methods for Trace Gas Detection

Fundamentals of Laser Absorption Spectroscopy

Beer-Lambert's Law of Linear Absorption

$$I(v)=I_0 e^{-\alpha(v) P_a L}$$

 $\alpha(\nu)$ - absorption coefficient [cm⁻¹ atm⁻¹]; L – path length [cm]

v - frequency [cm⁻¹]; P_a- partial pressure [atm]

$$\alpha(v) = C \cdot S(T) \cdot g(v - v_0)$$

C - total number of molecules of absorbing gas/atm/cm³ [molecule·cm⁻³·atm¹]

S – molecular line intensity [cm · molecule⁻¹] $g(v - v_0)$ – normalized spectral lineshape function [cm], (Gaussian, Lorentzian, Voigt)

Optimum Molecular Absorbing Transition

- Overtone or Combination Bands (NIR)
- Fundamental Absorption Bands (MID-IR)

Long Optical Pathlengths

- Multipass Absorption Cell
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retroreflector)
- Evanescent Field Monitoring (fibers & waveguides)

Spectroscopic Detection Schemes

- Frequency or Wavelength Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy

Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE
Sensitivity (% to ppt)	Power
Selectivity	Single Mode Operation and Narrow Linewidth
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Tunable Wavelengths
Directionality or Cavity Mode Matching	Beam Quality
Rapid Data Acquisition	Fast Time Response
Room Temperature Operation	No Consumables
Field deployable	Compact & Robust

IR Laser Sources and Wavelength Coverage

Quantum and Interband Cascade Laser: Basic Facts

- Band structure engineered devices (emission wavelength is determined by layer thickness MBE or MOCVD) QCLs operate from 4 -160 µm (limited by the CB offset on the short wavelength side)
 - Unipolar devices
 - Cascading (each electron creates N laser photons and the number of periods N determines laser power)
- Compact, reliable, stable, long lifetime, commercial availability
- Fabry-Perot (FP) or single mode (DFB)
- Broad spectral tuning range in the mid-IR (4-24 μ m for QCLs and 3-5 μ m for ICLs)
 - 1.5 cm⁻¹ using current
 - 10-20 cm⁻¹ using temperature
 - > 150 cm⁻¹ using an external grating element
- Narrow spectral linewidth cw, 0.1 3 MHz & <10Khz with frequency stabilization
 - Linewidth is ~ 300 MHz of pulsed QCLs (chirp from heating)
- High output powers at TEC/RT temperatures
 - Pulsed peak powers of 1.6 W; high temperature operation ~ 425 K
 - Average power levels: 1-600 mW
 - ~ 50 mW, TEC CW DFB (Alpes)
 - >600 mW (CW FP) and >150 mW (CW DFB) at 298 K (Northwestern)

Wavelength Coverage of IR Detectors

HITRAN Simulation of Absorption Spectra (3.1-5.5 & 7.6-12.5 μm)

Representative Trace Gas Detection Limits

Species	cm ⁻¹	Precision 1 s RMS (ppt)	LOD 100 s (ppt)	
NH ₃	967	50	20	
NO ₂	1600	80	40	
HONO	1700	200	80	
CO	2190	120	50	
N ₂ O	2240	100	50	
HNO ₃	1720	200	80	
O_3	1050	500	200	
NO	1905	200	100	
CH ₄	1270	400	200	
SO ₂	1370	310	120	
C ₂ H ₄	960	360	140	
HCHO	1765	350	100	
H ₂ O ₂	1267	1000	400	

Limit of Detection (LOD) for S/N = 2

Pathlength: 210 m

Typical data acquisition

time: 1-100 s

Motivation for NH₃ Detection

- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver dysfunctions)

Infrared NH₃ Absorption Spectra

Fundamentals of Laser Absorption Spectroscopy

Beer-Lambert's Law of Linear Absorption

$$I(v)=I_0 e^{-\alpha(v) P_a L}$$

 $\alpha(\nu)$ - absorption coefficient [cm⁻¹ atm⁻¹]; L – path length [cm]

v - frequency [cm⁻¹]; P_a- partial pressure [atm]

$$\alpha(v) = C \cdot S(T) \cdot g(v - v_0)$$

C - total number of molecules of absorbing gas/atm/cm³ [molecule·cm⁻³·atm¹]

S – molecular line intensity [cm · molecule⁻¹] $g(v - v_0)$ – normalized spectral lineshape function [cm], (Gaussian, Lorentzian, Voigt)

Optimum Molecular Absorbing Transition

- Overtone or Combination Bands (NIR)
- Fundamental Absorption Bands (MID-IR)

Long Optical Pathlengths

- Multipass Absorption Cell
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retroreflector)
- Evanescent Field Monitoring (fibers & waveguides)

Spectroscopic Detection Schemes

- Frequency or Wavelength Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy

Pulsed QC Laser Based Gas Sensor

Ammonia Absorption Spectrum @ 993 cm-1

CW RT DFB QC laser based NH₃ Sensor @ 9 µm (1113 cm⁻¹)

Wavelength Modulation Spectroscopy of NH₃

QCL Drive Current:
 Quasi CW +
 Wavelength modulation

 Calibration with a 1038 ppm NH₃:N₂ mixture

1σ extrapolated sensitivity82 ppb.m/√Hz

⇒ Improvement by a factor of 3 compared to direct absorption spectroscopy

Motivation for Precision Monitoring of H₂CO

- Pollutant due to incomplete fuel combustion processes
- Potential trace contaminant in industrial manufactured products
- Precursor to atmospheric O₃ production
- Medically important gas

Mid-IR DFG Based H₂CO Sensor

Advanced DFG System for H₂CO Detection

Laser₁ = 1560 nmLaser₂ = 1083 nm

A. Fried et al, Development iof DFG source inn progress

H₂CO Detection in Ambient Air at 3.53 μm

H₂CO and O₃ Concentrations at Deer Park, TX for July 20-31, 2003

Fundamentals of Laser Absorption Spectroscopy

Beer-Lambert's Law of Linear Absorption

$$I(v)=I_0 e^{-\alpha(v) P_a L}$$

 $\alpha(v)$ - absorption coefficient [cm⁻¹ atm⁻¹]; L – path length [cm]

v - frequency [cm⁻¹]; P_a- partial pressure [atm]

$$\alpha(v) = C \cdot S(T) \cdot g(v - v_0)$$

C - total number of molecules of absorbing gas/atm/cm³ [molecule·cm⁻³·atm¹]

S – molecular line intensity [cm · molecule⁻¹] $g(v-v_0) - normalized spectral lineshape function [cm], (Gaussian, Lorentzian, Voigt)$

Optimum Molecular Absorbing Transition

- Overtone or Combination Bands (NIR)
- Fundamental Absorption Bands (MID-IR)

Long Optical Pathlengths

- Multipass Absorption Cell
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retro-reflector)
- Evanescent Field Monitoring (fibers & waveguides)

Spectroscopic Detection Schemes

- Frequency or Wavelength Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy

From conventional PAS to QEPAS

Comparative Size of Absorbance Detection Modules (ADM)

HITRAN Based Simulation of a H₂CO-H₂O-CH₄ Spectrum in Tuning Range of a 3.53µm IC Laser

- $H_2CO: 10 ppb$
- $H_2O: 3\%$
- CH₄: 2 ppm
- Optical path: 100 m
- Total pressure: 30 Torr

HITRAN Based Simulation of a H₂CO-H₂O-CH₄ Spectrum in Tuning Range of a 3.53µm IC Laser

- $H_2CO: 10 ppb$
- $H_2O: 3\%$
- CH₄: 2 ppm
- Optical path: 100 m
- Total pressure: 30 Torr

QCL based Quartz-Enhanced Photoacoustic Sensor

2f-QEPAS based H₂CO signal at 3.53 μm (2832.48 cm⁻¹)

- [H₂CO]: 13.27 ppm
- QEPAS NNEA Sensitivity:

 $1.1 \times 10^{-8} \text{cm}^{-1} \text{ W/VHz}$;

NEC (τ =1s): 0.28 ppmv (5 mW)

For comparison:

QEPAS Sensitivity for NH₃:

 $5.4 \times 10^{-9} \text{cm}^{-1} \text{W} / \sqrt{\text{Hz}}$

NEC (τ =1s): 0.50 ppmv (38 mW)

IC Laser based Formaldehyde Calibration Measurements with a Gas Standard Generator

- H₂CO absorption frequency: 2832.5 cm⁻¹
- Lock-In time constant:10 s
- QEPAS parameters
 - Resonance frequency: 32.760 KHz
 - Q-factor: 17336
 - Pressure: 200 Torr
 - Gas Flow: 75 sccm
 - IC laser power: 6 mW

Merits of QE Laser-PAS based Trace Gas Detection

- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Immunity to ambient and flow acoustic noise, laser noise and etalon effects, which allows applications that involve harsh operating environments
- Required sample volume is very small. The volume is ultimately limited by the gap size between the TF prongs, which is < 1 mm³ for the presently used QTF.
- No spectrally selective elements are required
- Applicable over a wide range of pressures, including atmospheric pressure
- Sensitive to phase shift introduced by vibrational to translational (V-T) relaxation processes and hence the potential of concentration measurements of spectrally interfering species
- Ultra-compact, rugged and low cost compared to LAS that requires a multipass absorption cell and infrared detector(s)
- Potential for optically multiplexed concentration measurements

QEPAS Performance for 10 Trace Gas Species (Dec'05)

Molecule (Host)	Frequency, cm ⁻¹	Pressure, Torr	NNEA, cm ⁻¹ W/Hz ^{1/2}	Power, mW	NEC (τ=1s), ppmv
H ₂ O (N ₂)**	7181.17	60	2.1×10 ⁻⁹	5.8	0.18
HCN (air: 50% hum) **	6539.11	60	< 2.6×10 ⁻⁹	50	0.1
$C_2H_2((N_2)^{**}$	6529.17	75	~2.5×10 ⁻⁹	~40	0.06
NH ₃ (N ₂)*	6528.76	60	5.4×10 ⁻⁹	38	0.50
CO ₂ (exhaled air)	6514.25	90	1.0×10 ⁻⁸	5.2	890
CO ₂ (N ₂) ***	4990.00	300	1.5×10 ⁻⁷	4.6	130
CH ₂ O (N ₂) *	2832.48	100	1.1×10 ⁻⁸	4.6	0.28
CO (N ₂)	2196.66	50	5.3×10 ⁻⁷	13	0.5
CO (propylene)	2196.66	50	7.4×10 ⁻⁸	6.5	0.14
N ₂ O (air+5%SF ₆)	2195.63	50	1.5×10 ⁻⁸	19	0.007

^{* -} Improved microresonator

NNEA – normalized noise equivalent absorption coefficient.

NEC – noise equivalent concentration for available laser power and $\tau=1$ s time constant.

For comparison: conventional PAS 2.2×10^{-9} cm⁻¹W/ $\sqrt{\text{Hz}}$ (1,800 Hz) for NH₃*

^{** -} Improved microresonator and double optical pass through QTF

^{*** -} Without microresonator

Fundamentals of Laser Absorption Spectroscopy

Beer-Lambert's Law of Linear Absorption

$$I(v)=I_0 e^{-\alpha(v) P_a L}$$

 $\alpha(v)$ - absorption coefficient [cm⁻¹ atm⁻¹]; L – path length [cm]

v - frequency [cm⁻¹]; P_a- partial pressure [atm]

$$\alpha(v) = C \cdot S(T) \cdot g(v - v_0)$$

C - total number of molecules of absorbing gas/atm/cm³ [molecule·cm⁻³·atm¹]

S – molecular line intensity [cm · molecule⁻¹] $g(v-v_0) - normalized spectral lineshape function [cm], (Gaussian, Lorentzian, Voigt)$

Optimum Molecular Absorbing Transition

- Overtone or Combination Bands (NIR)
- **Fundamental Absorption Bands (MID-IR)**

Long Optical Pathlengths

- Multipass Absorption Cell
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retro-reflector)
- Evanescent Field Monitoring (fibers & waveguides)

Spectroscopic Detection Schemes

- Frequency or Wavelength Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy

Off-Axis Integrated Cavity Output Spectroscopy (ICOS) Based Gas Sensor

- Novel compact gas cell design of length: 3.8 5.3 cm and cell volumes $< 80 \text{ cm}^3$:
- Low loss mirrors (ROC 1m):~60-250 ppm, R~99.975, L_{eff}=170-800 m
- Rapid eNO concentration measurements during a single breath cycle.are feasible

TEC – CW-DFB QCL based Nitric Oxide OA-ICOS Sensor

2f NO Absorption Signal at 1835.57 cm⁻¹

94.9 ppbv 0.5 **339333333** 0.4 2f signal (V) 0.3 47.5 ppbv **30₂838₂8**26 0.2 23.7 ppbv **4004**0 0.1 0 ppbv 0.0 20 30 10 40 NO measurement numbers

 $NO:N_2$ mixture @ 100 Torr Effective L= 700 m

Noise equivalent sensitivity: $0.7 \text{ ppbv} (1\sigma)$

ICOS vs. CRDS

ICOS

- High sensitivity
- High time resolution not required, slow detector is sufficient
- Multiple high-order transverse modes, off-axis propagation
- Relies on quasi-random mode structure, non-critical alignment
- Low throughput [(1-R)/2 max]
- No need for narrow line laser
- Sensitive to the source power fluctuations

CRDS

- Extremely high sensitivity possible 10⁻¹¹ cm⁻¹ demonstrated in NIR
- Time resolved measurements, fast detector needed
- Single transverse mode, on-axis propagation – critical alignment
- Laser must be locked to the cavity mode
- High throughput in resonance for a narrow line (~kHz) laser
- Insensitive to the source power fluctuations

External Cavity QCL Based Spectrometer

- External cavity length

 Lens

 Grating

 QCL chip

 Grating angle
- PZT controlled EC-length
- PZT controlled grating angle
- Optimization of cavity alignment performed by means of lens positioning using electrically controlled 3D translation stage

G. Wysocki et al. Applied Physics B, 81, p.769 (2005)

Mid-IR NO Absorption Spectra Acquired with a Tunable TEC QCL

Important facts of novel EC-QCL Technology

- Laser spectroscopy provides superior resolution compared to other techniques e.g. FTIR
- Single mode operation of the laser is required
- Wavelength tunability of single mode (DFB) mid-IR semiconductor lasers is ~10cm-1
- Demonstrated wavelength tunability of the Rice EC QCL is ~ 35 cm-1 (limited by the gain chip properties and not by the designed EC configuration)
- Gain chips, which can provide tunability of >200 cm⁻¹ are already reported in the literature

Sensor control and data processing

- Computer control of a laser-based spectroscopic sensor using PC (Windows, LabView) is convenient but not reliable and often does not allow to achieve the optimum sensor performance
- Reliable systems such as NI Real-Time devices are expensive, in part because of their multifunction abilities
- Dedicated electronic modules for autonomous sensor control and data processing are reliable, small, and consist of inexpensive part
- Today's technology such as DSP and FPGA offers convenience and flexibility of design

Dedicated DSP-based electronics for trace gas sensing using a pulsed QC laser

Pulsed laser requires high speed pulsed processing system for minimum detection limits

Concept of a ultra-miniature QEPAS gas sensor

Conclusions and Future Directions

Laser based Trace Gas Sensors

- Ultra compact (~ 0.2 mm³), robust & low cost sensors based on QE L-PAS
- QEL-PAS is immune to ambient noise. The measured noise level coincides with the thermal noise of the QTF
- Best to date demonstrated QEPAS sensitivity is $2.1 \times 10^{-9} \, \text{cm}^{-1} \text{W} / \sqrt{\text{Hz}}$ for $H_2O:N_2$
- QEPAS exhibits a low 1/f noise level, allowing data averaging for more than 3 hours
- Detected 14 trace gases to date: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, HCN, C₂H₄, C₂H₂, C₂H₅OH, SO₂, H₂CO and several isotopic species of C, O, N & H

Applications in Trace Gas Detection

- Environmental & Spacecraft Monitoring (NH₃, CO, CH₄, C₂H₄, N₂O, CO₂ and H₂CO)
- Medical Diagnostics (NO, CO, COS, CO₂, NH₃, C₂H₄)
- Industrial process control and chemical analysis (NO, NH₃, H₂O)

Future Directions and Collaborations

- QE L-PAS based applications using novel thermoelectrically cooled cw and broadly wavelength tunable quantum and interband cascade lasers
- Investigate QTFs with lower resonant frequencies
- Investigate amplitude modulation QEPAS potential and limitations
- New target gases, in particular VOCs and HCs
- Development of optically multiplexed gas sensor networks based on QE L-PAS

NASA Atmospheric & Mars Gas Sensor Platforms

Tunable laser sensors for earth's stratosphere

Aircraft laser absorption spectrometers

Tunable laser planetary spectrometer

OA-ICOS based CO Concentration Measurements at 2196.66 cm⁻¹

FT-IR survey absorption spectrum of benzene vapor (C_6H_6)

