

Laser-Based Trace Gas Sensing Techniques

- Optimum Molecular Absorbing Transition
 - Overtone or Combination Bands (NIR)
 - Fundamental Absorption Bands (Mid-IR)
- Long Optical Pathlength
 - Multipass Absorption Gas Cell (e.g., White, Herriot, Chernin, Aeris Technologies, and Circular Cylindrical Multipass Cell
 - Cavity Enhanced and Cavity Ringdown Spectroscopy
 - Open Path Monitoring (with retro-reflector or back scattering from topographic target): Standoff and Remote Detection
 - Fiberoptic & Wave-guide Evanescent Wave Spectroscopy
- Spectroscopic Detection Schemes
 - Frequency or Wavelength Modulation
 - Balanced Detection
 - Zero-air Subtraction
 - Photoacoustic & Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)

Key Characteristics of Mid-IR QCL & ICL Sources — Nov 2017

**Band — structure engineered devices
Emission wavelength is determined by layer thickness — MBE or
MOCVD; QCLs operate in the 3 to 24 µm spectral region and ICLs
can cover the 3 to 6 µm spectral range.

**Compact, reliable, stable, long lived, and commercially available
Fabry-Perot (FP), single mode (DFP) and multi-wavelength devices

Uside spectral tuning ranges in the mid-IR

**1.5 cm² using injection current control for DFB devices

**10-20 cm² using current and temperature control for QCLs DFB Array

**- 9.15 cm² (22% of c. w), using an external grating element and FP chips
with heterogenous cascade active region design, also QCL DFB array &
Optical Frequency Compist (OFCs). > 100 to -4.50 cm² with kHz to subkHz resolution and a comb spacing of > 10 GHz

Narrow spectral linewidths

**CW 0.1-3 MHz & <10kHz with frequency stabilization

**Pulsed: -300 MHz

**High pulsed and CW powers of OCLs & ICLs at RT
temperature

**TEC QCL pulsed peak power of -203 W with 10% wall plug efficiency

**CW QCL powers of -5 W with 23% wall plug efficiency at 293 K

**> 600 mW CW DFB QCL at RT; wall plug efficiency 23% at 4.6 µm

**> 8mW CW DFB QCL at RT; wall plug efficiency 23% at 4.6 µm

**> 8mW CW DFB QCL at RT; wall plug efficiency 23% at 4.6 µm

**> 8mW CW DFB QCL at RT; wall plug efficiency 23% at 4.6 µm

Quartz-Enhanced Photoacoustic Spectroscopy: Merits and main characteristics

- Very small sensing module and sample volume (a few cm³)
- Extremely low dissipative losses
- Optical detector is not required
- Wide dynamic range (from % down to ppt)
- Immune to environmental acoustic noise
- Acoustic micro-resonators to enhance the QEPAS signal
- Sensitivity scales with laser power
- Cross sensitivity issues
- Alignment requirement is that no incident radiation will hit the QTF or micro-resonators)
- Responsivity depends on the molecular energy

Record sensitivity: 50 part-per-trillion

 $\lambda = 10.54 \,\mu m$ (mid – IR), SF₆

olo et el., Optios Letters, 37, 4461-4463, 2012.

New generation of custom QTFs behave similar to "standard" QTFs in terms of their vibrational

QEPAS Performance for Trace Gas Species (Sept. 2017) 4.74×10 41×10 CHI-(No-1.5% Rad) NIR 6479.00 4.1 × 10⁻¹ 56 K 10-CO. (No Life His CILO (Nu75% RH) 2804 90 CD (No +2.2% HoD 2176.28 1.4×10 CO (propylene) NiO (ale+8948Fe) CaffeOH (Na)** Mid-IR 1934.2 No (Ne+Maio) MgO₃ Call Fa (No)*** NHa (Na)*

Summary, Conclusions and Future Work

Custom fabricated QTFs with new Shapes and Dimensions

- Development of robust, compact, sensitive, selective mid-IR trace gas senso technology based on RT, CW high performance DFB ICLs & QCLs for environmental monitoring and medical diagnostics
- ICLs and QCLs were used in TDLAS and PAS/QEPAS based sensor platforms
- Performance evaluation of four target trace gas species were reported
- I-QEPAS demonstration resulted in a factor of 240 increase in detection sensitivity
 - CO₂ MDL of 300 pptv at 50mbar was achieved for a 20 sec integration time
- THz-QEPAS $\rm H_zS$ sensing demonstration using a custom QTF resulted in a NNEA of 10^{10} cm 1 W(Hz) $^{1/2}$. MDL was 13 ppmv for a 30 sec integration time.
- Novel implementation of QTF 1st overtone flexural I mode for QEPAS sensing
- Development of an "active" I-QEPAS system for CO and NO detection in the ppt range
- Future development of a pulsed QEPAS sensor system
- Future development of trace gas sensors for monitoring of broadband absorbers $acetone(C_3H_6O)$, propane (C_3H_8) , benzene (C_6H_6) , acetone peroxide-TATP $(C_6H_{12}O_4)$
- Future development of mid-IR electrically pumped interband cascade optical frequency combs (OFCs) jointly with JPL, Pasadena, CA, NRL, Washington, DC and Bari (Italy)