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OUTLINE

*Quartz Enhanced Photo-Acoustic Spectroscopy
(QEPAS): Basics and merits

a) Custom QTFs for QEPAS applications

b) Single tube on-beam QEPAS

c) QTFs 1% overtone flexural mode

d) Dual-antinode excited QEPAS sensor

e) Dual-gas QEPAS sensor

Future Directions and Conclusions

Quartz-Enhanced Photoacoustic Spectroscopy
Introduction and Basic Operation

® Optical radiation is focused between the prongs of a quartz tuning fork

® Trace gases absorb optical energy at characteristic frequencies

©® A pressure wave (sound}is generated by madulating the laser power

@ Resonant mechanical vibrations are excited by the sound waves

© The mechanical vibration is converted to an electrical signal via the piezoelectric effect
® The trace gas concentration is proportional to the electrical signal
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Quartz-Enhanced Photoacoustic Spectroscopy
Merits and main characteristics _ =

©® Very small sensing module and sample volume {a few cm?)
@ Extremely low dissipative losses

@ Optical detector is not required

® Wide dynamic range (from % down to ppt)

® Immune to environmental acoustic noise

oA ic mici to enh the QEPAS signal

@ Sensitivity scales with laser power
@ Cross sensitivity issues
@ Alignment requirement Is that no incident radiation
will hit the QTF or micro-resonators)
@ Responsivity depends on the molecular energy
transfer processes
Record sensitivity: 50 part-per-trillion
A = 1054 pm (mid — IR), SF¢

Quartz tuning fork: Physics

Free motion conditions: Euler-Bernoulli equation

H*y.t) Aa‘y(x,t)_o
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Resonance frequencles B fo = ﬁﬁ@ nzjg

QEPAS signal: S o€ Pﬂ@&
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Quality factor: Q = f,,/Af, rwam

Piezoelectricsignal; [ = uj—f=é

Custom tuning forks: ComsoL vy
. . MULTIPHYSICS* ‘,
Realization | o

Objective: Design of a tuning
fork optimized for QEPAS sensing
applications

€
Goals:
Decrease the resonance frequency
Increase the gap between the prong
Increase the quality factor
Increase the charge collection efficiency

All these figures of merit depend on the tuning
fork geometry
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Custom tuning forks: .#a
Fundamental Mode = « v ]
D0 .«/,
@ The Quality Factor scales linearly with ! T I ‘o
the fork constant g 3 wn o0,
Qxwr/L =%
® The Electrical Resistance R depends on the v --“..r.: s
generated charge collection efficiency
R« L3 /wVT -
Foo Jo
QTF DESIGN GUIDELINES . Y
® R{xL3/wT) | - :
® Qo wT/L) }ﬂw,r‘? Lt __"'. ;-é
® f(x 7/ L%) <50 KHz wmp Limit Imposed by gas relaxation rates ™ .:-,:" ....:». gy

Fiber-amplified QEPAS -3
with custom QTFs :

IGnﬂw' L
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Opto-isolator _,

Cwstom QTF ‘Vianderd QTF
© Watt-level excitation source | 1.5 W @ 1.58 um
+ Standard QTF shown bhigh noise level and
require el 1 s ol 0

+ Custom tuning forks with large prong spacing
(700um) gives low-noise and allow easy

alignment
Gas Target H,S

Fiber-amplified QEPAS with custom
|QTF: Results
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Tume )

Carant par)
QEPAS detection sensitivity enhanced by a factor of ~40,
compared to the case of a sensor using a bare custom QTF

: 30 ppb
NNEA: 1.3-10* em - W/VHz
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QEPAS sensors in the THz range

Standard QTFs are characterized by a compact volume
(~0.3%0.3x3mm?) o S E
ulnaw-u‘nn,u
In QEPAS mrasurements, it is critical to _ ** I
avold laser illumination of the QTF, since 3 |
the radiation biocked by the QTF pmngs}
g an non-zero
background which leads to a shifting

fringe-like interferance pattemn an

i
A ||’ \ v
WA

The limited space (300 pm) between the JTF*fiFougs i1s comparable
with the wavelength of THz sources. which has represented do far the
main limitation for the use in QEPAS-based sensor systems in the
THz range.

Larger sizet_i- QTFs are mandatory in the THz range

15t THz QEPAS sensor
employing custom QTFs

ca— Prongs spacing = 1mm

QTF with same geometry of
standard one (~8x bigger)
I.
! -7:" ----------- 131840 N0 M 11080
! - Frogesey hm)
, @ 4 sec Lock-in constant, NEC = 7 ppm (laser
D power 40 uW)

- NNEA = 2.0 x10%° cm *W{Hz) 2

THz QEPAS results employing a Customﬁ_}
4

G
TTH

IQTF Prongs spacing = 700 pm 5
¢ Wavenumber: 131.054 cm? {3.93 THz2) }

* Absorption line-strength: 4.28x10°2! cm/mol
* Optical power: 40 pW

{ { )
detection

R T e T Y

96.4% of the light intensity passes
b the QTF prony /




THz QEPAS results employing a Custonigg)
QTF ‘w&g

Comparison between QTFs with
custom and new geometry

100 ppm of methanol in N, at P=10 Torr

HS R AN : en ] *  Same noise level

} \ ¢ Signal to noise ratio (SNR) and

9 o5 Sensitivity 9x better for QEPAS

Q N7 A . ST system employing a QTF with new
£33 — povey I Y

S0l Nr“\aw.;\‘_ el @ 30 sec integration time:
o0 J"ﬂl I“\‘ Sensitivity = 1609nlund____

sl | R

W X W a0 %
Fracuenoy spen (M)

QEPAS RECORD

QEPAS based gas sensor comparison
e QEPAS shows better
+ CHy A

o~ i Meoe-n Cadn  Md-TR potentialities
LI R at longer wavelenghts
; 10° © £0, 4CO
o Ncﬁf‘ HCO " Ro A ]Fan energy relaxation
g Mg e o, THz, ]rates of THz rotational
= 1074 "° “us]transition  allows  to
5 ew QTFs | «SFs__cion * ] operate at low pressure,
<. w a —— taking advantage of the
Z 10743 1high QTF Q-foctors and

3 .cupn enhanced selectivity.
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Single-tube micro-resonator QEPAS @
Novel approach p g

h 1 : Two small slits are cut symmetrically on each side of
i | wmmry~wmmm ;  the tube waist in the middle of the AmR, where the
x5 acoustic pressure antinode is located.
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Single-tube QEPAS Novel approach:

I8 1

Results s
Custom tuning forks @ 7,2 KHz with larger prong spacing
1 1
i d OFB Lower (Bl
np-,
wo 2 n

Two small siits are cut symmetrically on each side of the
tube waistIn the middie of the AmR, where the acoustic
pressure antinode is located.

Single-tube QEPAS: Results

Optimization of the AmR 00 —aakt
“ ' —Anel
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2 Signal (mV)
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SO-QEPAS Sigaal (mV)
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o Aarg 3 . “— Bert QTF e o1y E
“ ~Bere QTF
w wo_ T %o 1
L A ML 1
. ) " " m ™ » .
) » 3 "y r3 n Laser Curreat (mA)

AmR length (mm) AmR [)1} 1]
L =38 mm, improved SNR - 128 times AmR#1 (R 0%
AmR#2 09 065
L epseem= 46 mm AmRW3 i 075

Single-tube QEPAS Results

L [
Ant o a (1] " an L] b ] m 1 m £ <H Py -l
e o e e M g an s 128 VT e
aan 1 oan n o e T g s & 175204
Bars customQiF G s w o i = 1
Canvom QTF with an optimal treditienal en-beem 40
Sorn yandend OTF 1 i) 133 ns 1 - Amas’
T roimal U sans) o ser: ae @ oM W m Laxigrt

® ASNR gain factor of 128 with respect to the bare QTF and a
gin factor of 3 with respect to the standard on beam
configuration;

'® NNEA for SO-QEPAS detection Is 1.5 times lower then the
standard on-baam configuration using a commercial 32 KHz
QTF (1.2 vs 1.8 x 10 em W/vHe);

'® Sama detection semsitivity for a 46 mm double tube and a 26
mm single tube

@ Micro-resonator length for standard 32KHz QFF is ~20 mm




Custom tuning forks 1%t Overtone Mode

1
Losses at higher 1_1/1 + 1 - " \. "
vibrational modes: "%\ G T O ', N
X
Contribution from Interaction 1 I 2
with the support: Qup K @ ;- .;I
Contribution from 2 v
o Quy b e STV b/
medium: B Impw +7w? finpp.fy T s
ALt

@ At the 3" f.m. support losses dominata the

[ %nw' JAMpafy > 3w @ P = 75tom, T=25'c > fo » 3KHz
anergy dissipation processes;
@ Alr losses bacomes mportant only for QTFs

Qalr“gpr fn
3 JRiPa with very thin prongs

Custom tuning forks overtone modes

e

Fund S Guepiane E—E{:
o amme

QTFs chosen for the
investigation have f, < 50KHz

higher performance with

respect to the fundamental cne
Road map:
¢ Study of the overtone mode
* QEPAS sensors with overtone mode

mode
i - =
L N o
2.0 b 1 -_—-__J_'___T_rr 3
g w1 k Results:
* Overtone mode can exhibit
i o na
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Fingle-tube approach with QTF ﬁ

overtone mode s

[ ——
N b

Total lenght of the micro-
resonator  tube is  iaversly
prop | to QTF the r

@ 2.9KHr - A=118 mm

Asavnd/z < /1+ I2< A.wund

First overtone mode frequency is 6.3
‘times larger than the fundamental one
@ 17.8KHz —»A=19 mm

Near-IR SO-QEPAS operating at the QTF
1% overtone

al DFB Fy

|Excitation source:
1369nm 23 mW
Absorption line:

Water (H,0) 7303 23 cmr!
8.05% 102 cm mol !

Collimator diameter 200 pm
Temperature: 25 °C
Pressure: 760 Torr

Lock-in amplifier:

SR830 15/12dB 025Hz

QEPAS signal profiles [@
f, and f, modes " )

j':”f @ Moving the laser spot along |
g symmetry axis of the i::

prong, the QEPAS signal } . 50
follows the mode profile. L °

1| ® At the higher antinode
1 position, a large part of the
1

X sound wave is lost 0. =’y
" 1)
@ 1% f.m.: QEPAS signal maximum just
below the top of the QTF; i" L
} 2 \ o ‘.
® 3" fm.; QEPAS signal maximum 1 Y
when the laser spot is located at ; ol
the lower antinode.

Single-tube QEPAS with overtone
Results

Optimization of the AmR

= 50-QEPAS 1% RO
%“ —tarm B !

m b »
33 (]

2 3
&5 g
; 14 &)
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R [T T T e

AmR leagth (mm)

L b 46mm @ ASNR gain factor of 380 with respect to the bare QIF @ the fund. mods]
® Total micro-resonator optimal length of 18,5 mm
@ Micro-resonator length for 32KHz QTF Is ~10 mm

Laser correst (mA)

L s0.qzras = 38 mm




||50u5|e antinode excited SO-QEPAS
operating at the QTF 1% overtone

HVA

L weternes m ] . i i}

@ . A custom-made QTF with a prong length of 17 mm and prong spacing of 700 um was employed Target
@ Gas water vapor [n alr 3t a pressurs of 700 Torr
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@ Pigtailed distributed feedback (DFB) laser emitting at 1.37 pm

Double antinode excited SO-QEPAS

alw e
T

Distosss & {sven) Distance & (men)
QERAS ipanal )
(pana] (b1l Swasured for the bars sustom QTF m & function of A 150
The phase difference has to be dto %
maximize the QEPAS signal 3 .
2|
llnllnglemodeﬁberwuco(hd-mndnplme_h@t_ o
transducer serving as a phase compensator g
- Ty = 59
® A SNR gain factor of 500 with respect to the bare -1%0)

QTF aperating on the fundamental mode " O} [0} "e [
@ Total micro-resonators optimal length of 19 mm Laser current (mA)

Single-tube QEPAS with overtone Results
Performances comparison:
, o0 L, Gain
ke —— (mm)  (mm) (mm)  facter DNEA
bere QTF 1 159+10%
two-tubes 1513 % 2 40010¢
Custom single-tube 09 065 ") 128 1210104
Single-tubctoverione 098 0,62 145 330 276107
Donblc satitode d S oo N 13 1 00 173410%
bere QTF 1 370107
Standard
on-beam 124 08 100 30 L8°10¢
(NNEA ized roise ey 7 em™t - w/vHz)

sttty cahanddment Gielo

. ) umes hightn’ than that attindd by a comventionil
QEPAS \pectraphune bascd an commercal 326, QT3

Dual-gas QEPAS operating at both the QTF
fundamentgl and 1% overtone

Two beams from two independently
modulated lasers are focused between
the prongs of & quartz tuning fork at
two different positions to excite both
the fundamental and first overtone
flexural modes simultaneously

Py (QEPAS) sensor system based on frequency
division multiplexing tochnlque

Dual-gas QEPAS operating at both the QTF
fundamental and 1t overtone
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Waresemboriomi’|
@ No cross-talking b fund land 1%
@ Simultaneously dual-gas (C,H, and H,0) detection
@ Future improvements using single-tube resonators
Possible applications are: isotope tration ratio, NO/H,0 d. for breath sensing, etc.

Conclusions and Future Perspectives

»Demonstration of near-IR and THz QEPAS sensor employing custom
QTFs with new geometry and gold contact pattern with improved
sensitivity.
»Realization of a novel single-tube microresonator system
> First-demonstration of QEPAS sensors operating with the 1%t overtone
» Dual-antinode excited QEPAS with QTF operating at the 1%
overtone flexural mode
» Dual gas QEPAS with QTF simultaneously operate at the
fundamental and 1* overtone flexural mode

v Implement single tube micro-resonators in dual gas QEPAS

¥ Design and realize QTFs with optimized geometry for the 1% overtone
flexural mode

¥'_Push QEPAS sensor. module towards commercialization level




