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* Novel Laser-Based Trace Gas Sensor Technology
* Mid-IR TDLAS based on a Novel Multipass Gas Cell Design
= Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)
» Examples of Mid-infrared & THz Trace Gas
Species
* Future Directions of QEPAS-Based Trace Gas
Sensor Technologies
= I (Intra-cavity) - QEPAS
= New custom QTFs
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From Conventional PAS to Quartz Enhanced PAS (QEPAS)
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Laser-Based Trace Gas Sensing Techniques

Quartz Tuning Fork as a Resonant Microphone for QEPAS

¢ Optimum Molecular Absorbing Transition
= Qvertone or Combination Bands (NIR)
= Fundamental Absorption Bands (Mid-IR)
® Long Optical Pathlength
s Multipass Absorption Gas Cell (e.g., White, Herriot, Chernin,
Aeris Technologies, and Circular Cylindrical Multipass Cell
= Cavity Enhanced and Cavity Ringdown Spectroscopy
= QOpen Path Monitoring (with retro-refiector or back scattering
from topographic target): Standoff and Remote Detection
= Fiberoptic & Wave-guide Evanescent Wave Spectroscopy
° Spectroscoplc Detection Schemes
Frequency or Wavelength Modulation
= Balanced Detection
= Zero-air Subtraction

Spectroscopy (QEPAS)

@ = Photoacoustic & Quartz Enhanced Photoacoustic
RIC]

- Unigue Properties
47 = Extremely low internal losses.
* Q-10,000at! atm
* Q- 100,000 in vacuum
* Acoustic quadrupole y
* Low sensitivity to externa! sound
* Large dynamic range (—10°) - linear from
thnerrgnaly:oise to brgak(down) deformation
= 300K noise: x~10"" cm
* Breakdown: x~102 cm
* Wide temperature range: 1 6K to ~700K

]

Acoustic Micro-resonator Tubes
* Optimum inner diameter: 0 6 mm, pR-QTF
gap is 25-50 ym

* Optimum pR tubes must be ~ 4 4 mm long
(~M4<1<)M2 for sound at 328 kHz)

* SNR of QTF with R tubes: X 30 (depending
on gas composition and pressure)

Key Characteristics of Mid-IR QCL & ICL Sources —Sept 2016
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* Compact, rchable, m mh\ and commercially avalable
* Fabry-Perot (FF), singlc mode (DFB) and multi-wavel devices

* Wide spectral tuning ranges in the mid-[R
® 1.5cm’ using injection current control for DFB devices

A4.0l pm CW TEC DFB QCL based QEPAS CO
Gas Sensor System

+ 10-20 em’! using temperature control for DFB devices 4mm
® ~100 em' using current and temperature control for QCLs DFB =
® —525cm! (22" ol‘cw]usmgnnmlgnungelmmllndﬂ’:lup:

with heterogencous cascade ac! gn, also QCL DFD armay &
Optical Frequency Cnrnbl(OFCl) >100w<450an with kHz to sub-
kHz resolution and a comnb spacing of > 10 GHz

* Narrow spectral linewidths
T G013 Mz & <I0kHz with frequency suabilization

* High pulsed and CW powers of OCLs & ICLs at RT

temperature

TEC QCL pulsed poak power of ~203 W with [0% wall plug efficiency

CW QCL powers of — 5 W with 23% wall plug efficiency at 293K

> 600 mW CW DFB QCL at RT, wall plug efficiency 23% a1 4.6 pm

> SW W, DFE ICL, s KT
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CW TEC DFB QCL based QEPAS NO Gas Sensor
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Schematic of a DFB-QCL based Gas Sensor.

PcL. - plano-convex lens, Ph - pinhole,

QTF ~ quartz tuning fork, mR — microresonator,
RC- reference cell, P-clec D ~ pyro electne detector

Compact Prototype NO Sensar
{September 2012)

Performance of CW DFB-QCL based WMS QEPAS
NO Sensor Platform
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Custom fabricated QTFs with new Shapes and Dimensions
optimized for mid-IR and THz QEPAS
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SF, QEPAS sensor performance assessment and linearity

RICE|

CW DFB-QCL based CO QEPAS Sensor Results
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QEPAS Performance for Trace Gas Species (Sept. 2016)
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RICE For comparison: conventional PAS 2.2 % 10 *cm "W/ Hz for NH, 12




Development of a novel I-QEPAS based sensor design: ; . ; :
e, P ; Q gn Comparison of I-QEPAS with Other Trace Gas Sensing Techmquesl
Initial performance evaluation of I-QEPAS based on CO, detection
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At the same conditions of pressure and optical power,
Optical power build up cavity can provide: Optical pathlength (m)
= Bow-tie cavity D4 bigh reflectivity mirrors, R=09.9%
* Electronic Control Loop + PZT driver lock of cavity resonant frequency to QCL frequency
P Paimuco, O Scamercss, FX Tatal & V Spaguale, “Quurts-embepm] phetoncmsts: spactroscupy s revww™. Sensors, |4, 6163-6206(2044) 13 7 Patswwes, @ Scwmareic, F K Tiel & V Spagnolo, "Quartz-enbarsed photaacoustar spectrosnpy 8 ferem™. s—nu.umm«‘s
[-QEPAS Performance in locked mode and long term stability Summary, Conclusions and Future Work
= - *  Development o:obusl, compact, sensitive, selective mud-IR trace gas sensor
50 ppb CO;In N, =50 mba N e coaarisns < technology based on RT, CW high performance DFB ICLs & QCLs for environmental
5, e monitoring and medical diagnostics
i ¥ 3 * [ICLs and QCLs were used in TDLAS and PAS/QEPAS based sensor platforms
H | S Linearity * Performance evaluation of seven target trace gas species were reported.
§ | 4 ool * I-QEPAS demonstration resulted in a factor of 240 increase in detection sensitivity
. / = CO, MDL of 300 pptv at 50mbar was achicved for a 20 scc integration time
b = o prrey . 20 :-‘: — , Ld Yol * THz-QEPAS H;S sensing demonstration using a custom QTF resulted in a NNEA of]
- Fru-:y&m_(“_k) NEC = 300 ppt@ ZOsQ:,i:legrltion time 10-% e 'W(Hz)'?. MDL was 13 ppmy for a 30 sec integration time.
T Allan deviation ] (dsec lock-in time constant) * Novel implementation of QTF 1* overtone flexural | mode for QEPAS sensing
=t " NNEA =3.2x10-1° cm"W(Hz)"” = Development of “active” I-QEPAS system for CO and NO detection in the ppt range
g ! = Future development of pulsed QEPAS sensor systems
g | N 5N = _\ * Future development of trace gas sensors for monitoring of broadband absorbers:
i Py \M'“ A factor ~240 higher than -QEPAS C,;H,0), propane (CyHy), b (C4Hy), acetone peroxide-TATP (C¢H,,0,)
| Identical to the intracavity optical *  Future devel of mid-IR el Ily pumped interband cascade optical frequency
P e Y PO S| power enhancement factor (240) iy combs (OFCs) jointly with JPL, Pasadena, CA , NRL, Wastungton, DC and Ban (ltaly)
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Further Development of a novel I-QEPAS based Sensor Design

Computer Visusization of an Intra-Cavity Quartz Enhanced Photoacoustic
Sp: py Optical R

Bow-tie cavity resonator consists of 4 high reflectivity murrors, R=99 9%

Electromc Control Loop + PZT dniver for locking of the cavity resonant frequency to the
freq) of the freq: Laser excil source
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