

Laser-Based Trace Gas Sensing Techniques

- Optimum Molecular Absorbing Transition
 - Overtone or Combination Bands (NIR)
 - Fundamental Absorption Bands (Mid-IR)
- Long Optical Pathlength
 - Multipass Absorption Gas Cell (e.g., White, Herriot, Chernin, Aeris Technologies, and Circular Cylindrical Multipass Cell
 - Cavity Enhanced and Cavity Ringdown Spectroscopy
 - Open Path Monitoring (with retro-reflector or back scattering from topographic target): Standoff and Remote Detection
 - Fiberoptic & Wave-guide Evanescent Wave Spectroscopy
- Spectroscopic Detection Schemes
 - Frequency or Wavelength Modulation
 - Balanced Detection
 - Zero-air Subtraction
 - Photoacoustic & Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)

	Motorale (Hoot)	om 1	Pressure, Torr	NNEA,	Power, mW	NEC (tols).
VIS { NIR Mid-IR	On (see)	5500776	760	38+194	6.0	1,279
	Di Olia	13019 30	198	4.54 m 10 T	1238	15,600
	CAR GAN.	4503.00	730	41 = 10.7	57	30
	National Section	600.76	578	211/00	:60	40
	CAL (AL)	4177.07	165	3.4×36 ⁻⁰	13	1,760
	CIP Gris 17 JF JF Ob.	4652.04	768	72110	16	140
	Nation 1	8479.66	760	41×10 ⁴	10	1,508
	379 949-	6937 63	700	3.6×10+	43	3,000
	FICE (N: dry)	5739.34	760	53×10 ⁴	15	700
	COs (No1.3% H3O) *	4991.36	50	14×10 ⁴	44	18,000
	C ₂ H ₆	2976 B	360	42 × 194	18	.74
	C160 (No.75% RH)*	3304 90	75	E2×18*	7.2	130
	CIO (No +3.2% (6/0)	2176.20	(3)	14×10 ³	Th.	2
	CO (propylene)	2199 00	50	74 8 18 4	6.5	140
	NyO (sår+5%SF ₄)	2195 63	50	13×105	19	- 1
	CARON (NO**	1934.2	170	11416	10	90,000
	NO (FG+GGO)		235	13×W*	100	1
	H ₂ O ₂	1295.4	350	46H 18*	180	п
	CYSE Did	130E A3	770	T8×805	46	1
	MHP GATE.	(54s.39	110	TAKES	30	
	\$74	146.62	- 3	X7x39**	- 11 -	8 02 C10 part

Summary, Conclusions and Future Work Development of robust, compact, sensitive, selective mid-IR trace gas sensor technology based on RT, CW high performance DFB ICLs & QCLs for environmental

- monitoring and medical diagnostics ICLs and QCLs were used in TDLAS and PAS/QEPAS based sensor platforms
- Performance evaluation of seven target trace gas species were reported.
- I-QEPAS demonstration resulted in a factor of 240 increase in detection sensitivity
 - CO₂ MDL of 300 pptv at 50mbar was achieved for a 20 sec integration time.
- THz-QEPAS H $_3$ S sensing demonstration using a custom QTF resulted in a NNEA of $10^{-10}\,\mathrm{cm}^{-1}\mathrm{W(Hz)}^{-1/2}$. MDL was 13 ppmv for a 30 sec integration time.
- Novel implementation of QTF 1st overtone flexural 1 mode for QEPAS sensing
- Development of "active" I-QEPAS system for CO and NO detection in the ppt range
- Future development of pulsed QEPAS sensor systems
- Future development of trace gas sensors for monitoring of broadband absorbers acetone(C_3H_6O), propane (C_3H_8), benzene (C_6H_6), acetone peroxide-TATP ($C_6H_{12}O_4$)
- Future development of mid-IR electrically pumped interband cascade optical frequency combs (OFCs) jointly with JPL, Pasadena, CA, NRL, Washington, DC and Bari (Italy)