

Mid-infrared detection of atmospheric CH₄, N₂O and H₂O based on a single continuous wave quantum cascade laser

CLEO 2015 San Jose, CA

fay 10-15, 2015

Lei Dong¹, Yingchun Cao², Nancy P. Sanchez³, Robert J. Griffin³ and Frank K. Tittel¹

¹Dept. of Electrical & Computer Engineering, Rice University, Houston, TX 77005;

²Dept. Of FKT1 & Environmental Engineering, Rice University, Houston, TX 77005

http://www.ece.rice.edu/~lasersci/

Outline

☐ Introduction
☐ Absorption line selection and QCL characterization
■ Sensor system configuration
☐ Performance optimization and assessment
☐ Laboratory air component measurements
Atmospheric N_2O , CH_4 and H_2O concentration measurements
☐ Summary and futurework
•

Introduction: Nitrous Oxide, Methane and Water

NO₂, CH₄ & H₂O are three major atmospheric greenhouse gases contributing to global warming and climate change.

- Nitrous Oxide (N₂O)
 - A global warming potential (GWP) of 298
 - A longer atmospheric lifetime than carbon dioxide (CO₂)
 - 330 ppbv atmospheric concentration level with an increasing rate of ~0.7ppbv/yr
- Methane (CH₄)
 - A global warming potential of 25
 - A short lifetime (12 yrs) compared with CO₂ and N₂O
 - 1.8ppm atmopsheric concentration level
- Water vapor (H₂O)
 - A dominant energy carrier in the atmosphere and regulates planetary temperatures through the absorption and emission of radiation.

A simultaneous detection of NO₂, CH₄ & H₂O s helpful for a better understanding of global warming and climate change

Spectroscopy Fundamentals

Beer's Law:
$$\frac{I_t}{I_o} = \exp(-k_v L)$$

It is transmitted light intensity

Io is incident light intensity

 k_v is absorption coefficient

$$k_{v} = S(T) P x_{v} \phi_{v}$$

WMS-2f detection:

- Ramp (Hz) I to sweep over absorption lines
- Fast sinusoidal modulation f~kHz
- Demodulate at 2f (2nd derivative line-shape)

+ Multipass Gas Cell

Absorption Line Selection

- Most gas species have their strong fundamental absorption lines in the midinfrared spectral range
- N₂O, CH₄ and H₂O absorption lines occur at wavelengths from 3 to 8.5μm
- The strongest absorption bands are located at 3.3 μm for CH₄, 4.5 μm for N₂O, and 5.9 μm for N₂O
- A relatively strong absorption line at 7.7
 μm is a good compromise for the
 detection of N2O, CH4 and H2O
- Three neighboring absorption lines are well separated from each other occur within a relatively small spectral range of 0.5 cm⁻¹

N₂O: 1297.05cm⁻¹ CH₄:1297.486cm⁻¹

H₂O: 1297.184cm⁻¹

QCL Characterization & Performance Evaluation

Corning-Maxion- Thorlabs QCL, 7.73µm center-wavelength

Performance evaluation for a 7.73-μm CW DFB-QCL at different operating temperatures and injection currents. (a) QCL output power response curves; (b) Emission wavenumber curves.

Simultaneous Detection of CH₄, N₂O and H₂O

(a) Direct output of the mid-infrared detector,

(b) 2f signal of the sensor system for simultaneous three gas species (N₂O, CH₄, and H₂O) detection at a pressure of 100 Torr and a modulation depth of 4 mA.

Laboratory Measurements

- (a) Simultaneously measured concentrations of $\rm N_2O$, $\rm CH_4$, and $\rm H_2O$ in laboratory ambient air .
- (b) Allan deviation of N₂O, CH₄, and H₂O within constant concentration periods.

Atmospheric N₂O, CH₄ and H₂O Concentration Measurements

- (a) A CW QCL based N₂O, CH₄ and H₂O sensor system;
- (b) Measurement results of simultaneous monitoring of three gas concentrations in the atmosphere for a 6 hour time duration.

Summary and Conclusions

- Development of a 7.73 µm CW DFB QCL based absorption sensor for simultaneous detection of nitrous oxide, methane, and water vapor using a 76 m commercial optical path length astigmatic multipass Herriott.
- A minimum detection concentrations of 1.7 ppb for N₂O, 8.5 ppb for CH₄, and 11ppm for H₂O with 2 sec integration time were achieved.
- This single QCL based multi-gas detection system possesses application in environmental monitoring and breath analysis.

14

Future Outlook of mid-IR Sensor Technologies

Current sensor platform:

- ➤ 18 in multipass cell
- ≥ 24in x 18in board
- **>** QCL
- ➤ High power consumption for current and temperature control

Next generation sensor platform:

- ➤ 6.5 in novel multipass cell
- > 12.5in x 8in board (folded optical path)
- ➤ Interband cascade laser(s)
- ➤ low power consumption for current and temperature control

Innovative sensor platforms to funded by DOE ARPA-E (mid 2015-2018)

Sensor size: 2 in cube

15

Acknowledgements

- · National Science Foundation (NSF) ERC MIRTHE award
- · NSF-ANR (France) award for international collaboration in chemistry
- Robert Welch Foundation grant C-0586

16