

DFB-QCL based optical breath sensor for sensitive and real time ammonia detection

R. Lewicki, T. B. Schwartz, D.M. Thomazy, T.H. Risby, 4 S. Solga,² and F.K. Tittel¹

1 – Electrical and Computer Engineering Department, Rice University website: http://www.ece.rice.edu/lasersci

2 - St. Luke's Hospital, 701 Ostrum St, Suite 604, Bethlehem, PA 18015

3 - 11 Deer Park Drive, Suite 208 Monmouth Junction, NJ 08852

4 – Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205

Outline

Motivation. Real-time NH, breath sensor for non-invasive verification of medical condition Laser source: CW RT operated distributed feedback (DFB) OCL

Detection technique: Quartz Enhanced Photoacoustic Spectroscopy (OFPAS)

Exhaled breath is a mixture of molecules, some of which are present at very low concentrations, that have both:

· endogenous origin (normal and abnormal physiological processes) exogenous origin (e.g. inspiratory air, ingested food and beverages)

Exhaled human breath contains ~ 400 different chemical species, which can serve as blomarkers for the identification and monitoring of various types of human diseases or wellness states

Quartz Enhanced Photoacoustic Spectroscopy ID 0.6 mr Micro-resonator (mR) tubes Must be close to QTF but not touch QTF (25-50 µm gaps), Optimum inner diameter 0 6 mm. Optimum micro-resonator tubes are 4.4 mm long (~\lambda/4=1<\lambda/2 for sound at 32.8 kHz). Maximum SNR of QTF with mR tubes ×30 (depending on gas composition and

Important Biomedical Species

Malecule	Formula	Biological/Pathology Indication	Center wavelength [µm]
Pentane	C,Ha	Inflammatory diseases, transplant rejection	6.8
Ethene	C ₂ H ₆	Lipid peroxidation and oxidation stress, lung cancer (low ppbv range)	5.8
Carbon Dioxide Isotope ratio	raCO*\racO*	Halicobacter pylori infection (peptic ulcers, gestric cencer)	4.4
Carbonyi Suffide 🎅	cos	Liver disease, ecute rejection in lung transplant recipients (10-500 ppbv)	4.8
Carbon Disulfide	CS,	Disuffirem treatment for alonholism	6.5
Ammonia 🧖	NH _a	Liver and renal diseases, exercise physiology	10.3
Formsidehyde 🎇	CH3O	Cancerous tumors (400-1500 ppbv)	5.7
Nitric Oxide	NO	Nitric oxide synthese activity, inflammatory and immune responses (e.g. asthma) and vescular amouth muscle response (6-100 ppb)	5.3
Hydrogen Peroxide	н,о,	Airwey inflammation, oxidative stress (1-5 ppbv)	7.9
Carbon Monoxide	со	Smoking response, lipid perceldation, CO poisoning, vascular smooth muscle response	4.7
Ethylene 🕺	C³H*	Oxidative stress, cancer	10.6
Acetone 🥩	C,H,O	Ketosis diabetes mellitus	7.3

QEPAS based NH₃ Gas Sensor Architecture

ingle frequency OCL radiation recorded with FTIR for

Minimum detectable NH₃ concentration was:

Clinical Tests of NH, sensor in Bethlehem, PA healthy volunteers research center in Bethlehem, PA 24 healthy volunteers (blue) provided breath (x3) and blood (x1) samples. So far only 2 patients (each provided 2 samples) with cirrhosis participated (s

Dilution of a 5ppm NH, Reference Concentration

Monitoring of ammonia concentration in exhaled breath using laser spectroscopy techniques provides a fast, non-invasive diagnostic method for patients with live and kidney disorders, and belicobacter pylori infections (if patient was injected with urea and the NH₃ is labeled with ¹³N₃.

Summary

Minimum detectable concentration of NH₃ with DFB-QCL based sensor observer to date is- 6 ppby (1 a: 1 s time resolution

Fast sensor response time was obtained by shortening the length of the gas flow tubes and by keeping metal components of the sensor at +38 °C to m

CO₂ concentration measurements are performed independently by using a commercial breath analyzer with a built-in capnograph.

Laser spectroscopy with a mid-infrared, room temperature, continuous wave, high performance DFB QCL is a promising analytical approach for real time breath analysis and the quantification of breath metabolites

Current tasks include miniaturization of existing NH₃ sensor platform into a spact, robust instrumentation package and improving spectraphone technological

Simulated Mid-IR NH₃ Absorption Spectra

is 200 times higher than in the near-infrared region (~6600 cm⁻¹)

Wavenumber [cm⁻¹]

CW DFB-QCL optical power and ex-two different quasi-RT temperatures.

This material is based upon work supported by the National Science Foundation under Grant No. EEC-0540832