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Introduction Atmospheric Absorptions in our EC-QCL range EC-QCL Characterization for Mode Matching

The objective of this work is an extension of a recently HITRAN sbsorstion o 100 Torr
developed method of double-resonance photo-acoustic I v
spectroscopy (DR-PAS)'2 to the mid-IR spectral range
with a commercially available External Cavity Quantum
Cascade Laser (EC-QCL).

In DR PAS the optical power of the laser beam that is
sent into a resonant photo-acoustic cell is enhanced by
several orders of magnitude by optical resonance of a
cavity built-up around the PAS cell. The method also
provides a reliable mutual lock between the laser and
the cavity as well as seamless scanning of the
absorption spectrum within the entire tuning range of

o |

A 4 N [ Performance of DR QEPAS from H,0

Measurements in Laboratory Air

Atmoxrgtion cosfticnt {sonveri'|

q == 27 i | w ) > With the cavity open to ambient laboratory air it was
: T possible to sequentiaily lock the cavity to the cavity
o modes for an unlimited period of time and thus obtain
ol T an absorption spectrum of ambient air. It was not
possible to scan the laser continuously due to some

Molecules with strong Absorption within a

the laser. 10.34 pm mid-IR EC-QCL Tuning Range 4| technical features of our setup. The signal from an
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This performance can be further enhanced in the mid- it e = = values forthe Hand V- drocions * A DR-QEPAS NH, sensor prototype based on an

IR spectral range, which is now accessible with
commercially available quantum cascade lasers
(QCLs), especially broadly tunable EC-QCL would
result in a sub- part-per-bilion detection limit of

| s 1 Setu EC-QCL operating in the 10.34 pm range was
Expenmenta LD designed, built and tested
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Experimental Challenges and their Solutions - With 52 mW of QCL output power, 4.75 W was

+ Availability of optical components in the mid-IR spectral Powr 4TS W achieved with a buill-up cavity, which corresponds
EC-QCL Spectroscopic Source range such as mirrors, wave plates, variable filters, to a power enhancement of 91 times.
A Dayliaht Sof IR E c —_— isolators, even lenses is limited + A QEPAS sensitivity increase proportional to the
aylight Solutions mid- xternal Cavity — ower increase was achieved, which resulted in
with 72 mW peak power and a tuning range from Solution: For a proof of concept operate close to BR-QEPAS sensitivity of 1.9 x 109 cm-V/vHz.
933 cm to 1006 cm* (73 cm') was used to study DR- 10.6 pm ‘where 9ompanents for the CO, laser are
quartz enhanced photoacoustic spectroscopy (QEPAS) commercially available * A sensitivity increase of ~4 times should be

of chemical trace gas species

Peak to peak wavelength excursion of high speed
current modulation in current commercial models of EC-

possible by optimization of the DR-QEPAS sensor.
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* Weak absorption of H,0 and CO, - does not mask
other species with lower concentrations
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* Access to 7 important atmospheric molecules
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