

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
- Automobile, Truck, Aircraft and Marine Emissions
- **Rural Emission Measurements**
- Agriculture & Forestry, Livestock
- · Environmental Monitoring
- Atmospheric Chemistry
 - Volcanic Emissions
- · Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
- Crew Health Maintenance & Life Support
- Applications in Biomedical and the Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Sensitivity Enhancement Techniques for Laser Spectroscopy

- Optimum Molecular Absorbing Transition
 - Overtone or Combination Bands (NIR)
 - Fundamental Absorption Bands (MID-IR)
- Long Optical Pathlength
 - Multipass Absorption Cell (White, Herriot, Chernin)
 - Cavity Ringdown and Cavity Enhanced Spectroscopy
 - Open Path Monitoring (with & without retro-reflector):
 Standoff and Remote Detection
 - Fiberoptic Evanescent Wave Spectroscopy
- Spectroscopic Detection Schemes
 - Frequency or Wavelength Modulation
 - Balanced Detection
 - Zero-air Subtraction
 - Photoacoustic Spectroscopy (PAS and QEPAS)
 - Laser Induced Breakdown Spectroscopy (LIBS)

CW IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE			
Sensitivity (% to ppt)	Optimum Wavelength, Power			
Selectivity (Spectral Resolution)	Stable Single Mode Operation and Narrow Linewidth			
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Mode Hop-free Wavelength Tunability			
Directionality or Cavity Mode Matching	Beam Quality			
Rapid Data Acquisition	Fast Time Response			
Room Temperature Operation	High wall plug efficiency, no cryogenics or cooling water			
Field deployable in harsh environments	Compact & Robust			

Traditional and Quartz Enhanced
Photoacoustic Spectroscopy

Merits of QEPAS based Trace Gas Detection

- Very small sensing module and sample volume (a few mm³)
- Extremely low dissipative losses
- Optical detector is not required
- Wide dynamic range
- Frequency and spatial selectivity of acoustic signals
- Rugged transducer quartz monocrystal; can operate in a wide range of pressures and temperatures
- Immune to environmental acoustic noise, sensitivity is limited by the
- fundamental thermal TF noise: k_BT energy in the TF symmetric mode Absence of low-frequency noise: SNR scales as $\Box t$, up to t=3 hours as experimentally verified

QEPAS: some technical challenges

- Responsivity depends on the speed of sound and molecular energy transfer processes
- Sensitivity scales with laser power
- Effect of H-O
- Cross sensitivity issues
- Alignment cost

Molecule (Hest)	Frequency,	Pressare, Tarr	NNEA.	Pawer, mW	NEC (g=1s).
If O GATA	7306.73	60	1.9×10	9.5	0.09
HCN (ale: 50% RII)*	653911	60	46-10	50	0.16
CiHi (Ni)*	6323.88	720	41410	57	0.93
NH ₄ (N ₂)*	652176	373	3.1×10*	60	0.06
C'H' (kil).	6) 77.07	715	5.4×10*	13	17
CIF(s/+1/3, HfO),	605709	760	3.7×10*	16	0.24
CO ₂ (breath -58% RH)	6361 23	150	8 2×10*	45	40
H,8 (N,)*	6337.63	780	5.6=10	43	(a)
HCl (N ₂ dey)	373926	760	5 2×10 ⁴	15	0.7
CO ₂ (N ₁ +1.5% H3O) *	4991.26	50	144112	- 44	18
CH ₂ O (N ₂ :75% RH)*	28144 90	75	87×10*	7.2	0.12
CO (N ₁)	2196.66	30	5 3=10"	13	0.5
CO (propylene)	2196 66	50	7.4=10*	6.5	0 14
N ₁ O (str+5%5F ₄)	2195 63	50	15=10*	19	0.007
NO (N ₁ +H ₂ O)	1900 07	250	7.5=10-	100	0 003
CHIOH (N)	1934.2	770	2.2×10°	10	90
Calify (Na)	1208 62	770	7 H=10 ⁻⁹	66	0.009
NH-(Na)*	1046 39	110	1.6=10**	30	0.006
NO (N ₁ +H ₂ O) C ₂ H ₂ OH (N ₁)***	1900 07 1934 2 1208 62 1046 39 and double openil part and terral interventation of everlable	250 770 770 110 monthrough Acti monthror reflected	7 5=10" 2 2=10" 7 8=10" 1 6=10"	100 10 6 6 20	0 003 90 0 009 0 006

Groups working on Quartz Enhanced Photoacoustic Spectroscopy

- · Rice University
- · UMBC, Baltimore, MD
- Savannah River National Laboratory, Aikin, SC
- Pacific Northwest National Laboratory, Richland, WA
- NASA-JSC, Houston, TX
- · JPL, Pasadena, CA
- Woods Hole Oceanographic Institution, MA
- United States Naval Academy, Annapolis, MD
- Daylight Solutions Inc., San Diego, CA

- NKT Flexibles, Copenhagen, Denmark
- · University of Bari, Italy
- TU Clausthal, Germany
- TU Vienna, AustriaUniversity of Montpellier, France
- · Institute of Spectroscopy, Troitsk,
- University of Littoral, Dunkerque,
- Anhui Institute of Optics and Fine Mechanics, Heifei, China
- Zhejiang University, Hangzhou, China

Recent Applications of Mid-Infrared Laser based Trace Gas Sensors

Long-wavelength
Quantum Cascade lasers

Motivation for NH₃ Detection

- Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- · Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- · Semiconductor process monitoring & control
- · Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- · Medical diagnostics (kidney & liver diseases)

Outlook of future optical Chemical Sensor Technology

- Improvements of mid-infrared QCL. and ICLs in areas such as wall plug efficiency, temperature performance, beam shape, packaging and price reduction.
- Improvements of the existing sensing technologies (LAS, CES, QEPAS, EWS) using novel, thermoelectrically cooled, cw, distributed feedback (DFB), high power and broadly wavelength tunable mid-IR QCLs and ICLs.
- New applications enabled by novel broadly wavelength tunable and ultra-compact single frequency quantum cascade lasers (especially sensitive concentration measurements of broadband absorbers, in particular, UF₆, VOCs and HCs)

Performance evaluation of UF₆ Detection with a 16 μ m LIDAR using Reflection from a topographic Target

ideal conditions:

- Light source: 100 mW CW RT DFB QCL at 16 µm (625 cm-1)
- Collection mirror:~10" in diameter
- Photodetector.
 Hamamatsu MCT photoconductive LN-cooled detector, tuned to the peak sensitivity at 16 µm. Detector area 1 1 mm², D• = 10¹0 cm·Hz¹²²/W, NEP = 10¹¹¹ W/Hz¹².
- Distance between source/receiver to target: 200 m
- Diffuse reflectivity from target: ~50%
- · Neglecting scattering and background absorption
- · Neglecting turbulence

Potential problems:

- Background absorption of water, CO₂ and O₃
- Concentration of UF₆ in air is unknown. It can be low due to the reaction of UF₆ with water. This will require a special investigation.
- Differential reflectivity of natural targets at 16 μm is unknown. May impact detectivity. Investigation is required.

Properties of UF₆ 3 absorption band at 16 μm • Very large absorption coefficient, peak fractional absorption k·L for a roundtrip path L = 400 m and a 1 ppbv concentration is 3.5 □ 0³ • Absorption feature is too broad for wavelength modulation spectroscopy. An External Cavity QCL with a tuning range of ~30 cm⁻¹ will be needed. • High value of absorption permits using a compact QEPAS sensor

G. Baldaccini, et. al., "Diode Laser Absorption of UF₆ at Room Temperature around 16

μm.", Nuovo Cimento, 8, No 2, pp. 203 - 210 (1986)

Challenge: Atmospheric Water and CO₂ Transmission spectra for 200 m roundtrip of atmospheric water (50% relative humidity @ 25°C) and carbon dioxide with the overlap of the 16 μm absorption band of 100 ppb UF₆ (blue spectrum)

$16 \,\mu\mathrm{m}$ (625 cm⁻¹) UF₆ LIDAR Summary

- LIDAR performance assuming ideal conditions and a QCL power of 100 mW allows a detection of 140 pptv of UF₆ at a distance of 200m from the target
- With a broadly and rapidly tunable (>30 cm⁻¹ and >1000 Hz) 100mW EC-QCL it may be possible to detect UF₆ concentrations in air of ~ 1 ppbv
- Strong UF₆ absorption may permit a design of an ultra-compact, portable QEPAS detector with a detection sensitivity of ~1 ppbv using the effect of the QEPAS signal phase shift difference of UF₆ and interfering gases (see A. Kosterev et al. "Photoacoustic phase shift as a chemically selective spectroscopic parameter" Applied Physics B 78, 673-676, 2004)

Future Directions and Outlook of Chemical Trace Gas Sensing Technology

