

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
 - · Automobile, Truck, Aircraft and Marine Emissions
- · Rural Emission Measurements
- Agriculture & Forestry, Livestock
- · Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- · Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Applications in Biomedical and the Life Sciences
- · Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

REQUIREMENTS	IR LASER SOURCE		
Sensitivity (% to ppt)	Optimum Wavelength, Power		
Selectivity (Spectral Resolution)	Stable Single Mode Operation and Narrow Linewidth		
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Mode Hop-free Wavelength Tunability		
Directionality or Cavity Mode Matching	Beam Quality		
Rapid Data Acquisition	Fast Time Response		
Room Temperature Operation	High wall plug efficiency, no cryogenics or cooling water		
Field deployable in harsh	Compact & Robust		

Mid-IR Source Requirements for Laser Spectroscopy

Widely Tunable, CW, TEC Quantum Cascade Lasers

Daylight ???

Quartz Enhanced Photoacoustic Spectroscopy

Merits of QEPAS based Trace Gas Detection

- Very small sensing module and sample volume (a few mm³)
- · Extremely low dissipative losses
- · Optical detector is not required
- Wide dynamic range
- Frequency and spatial selectivity of acoustic signals
- Rugged transducer quartz monocrystal; can operate in a wide range of pressures and temperatures
- Immune to environmental acoustic noise, sensitivity is limited by the fundamental thermal TF noise: k_BT energy in the TF symmetric mode
- Absence of low-frequency noise: SNR scales as \sqrt{t} , up to t=3 hours as experimentally verified

QEPAS: some challenges

- Responsivity depends on the speed of sound and molecular energy transfer processes
- Sensitivity scales with laser power
- Effect of H2O
- · Cross sensitivity issues

Molecule (Hest)	Frequency.	Pressure, Torr	NNEA.	Pewer, mW	NEC (T=1s)
OND.	7305.75	60	1 9+10	9.5	0.09
HCN (air: 50% RH)*	6579.11	60	46-12	50	016
Citt's (Ma)*	6523.88	730	4.1410	57	0.03
NH ₂ (N ₂)*	6523 76	375	3 1×10	60	0:05
C'H' (ki),	6177.07	715	5.4+10*	15	1.7
CH4(N+1.2% H ₂ O)*	6057 09	760	3.7=10"	16	0.24
CO ₂ (breath -\$8% RH)	6361.23	150	8.2=10	45	40
11 ₆ 5 (N _d)*	6337.63	750	3.6*10*	45	- 5
HC1 (N ₁ dry)	5739 26	760	5.2×10*	15	0.7
CO2 (N1+1.5% H3O) *	4991.26	50	1.4=10-	44	18
CH ₂ O (N ₁ :73% RIO)*	2804 90	75	8.7=10	7.2	0.12
CO (N _i)	2196 66	50	5 3 = 10"	3.3	0.5
CO (propylene)	2196 66	50	74-10	6.5	0 14
N ₂ O (air+5%SF ₄)	2193 63	50	1.5×10*	19	0 (K)7
NO (N ₂ +H ₂ O)	1900 07	250	7.5×10°	100	0 003
C _i H _i OH (N _i)**	1934 2	770	2.2×10	10	90
Catte (Na)***	1208 62	770	7.8+10	66	0 009
NH ₂ (Ng)	1046.39	110	1 6*10*	20	0 006

Recent Applications of mid-infrared Laser based Trace Gas Sensors

Motivation for NH₃ Detection

- Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- · Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver diseases)

Molesule	Formula	Biologics#Pathology Indication	Center wavelength [µm]	
Pentane	C,H,	inflammatory diseases, transplant rejection	6.6	
Ethene RK:	C,H,	Lipid peroxidation and exidation stress, lung cancer (low ppby range)		
Carbon Dioxida isotope ratio	aco*taco*	Halicobacter pylori infection (peptic ulcers, gestric cancer)	4.4	
Carbonyl Sulfida 🎅	cos	Liver disease, acute rejection in lung transplant recipients (10-500 ppbv)	4.8	
Carbon Disulfide	CS,	Disulfirem treatment for alcoholism	6.5	
Ammonia 🎅	NH,	Liver and renal diseases, exercise physiology	10.3	
Formaldehyde 🏩	CHLO	Cancerous tumors (400-1500 ppbv)	5.7	
Nitric Oxide	NO	Nitric oxide synthese sctivity, inflammatory and immune responses (e.g. asthma) and vascular smooth muscle response (6-100 ppb)	8.3	
Hydrogen Peroxide	наот	Alrway Inflammation, exidative strees (1-5 ppbv)	7.9	
Carbon Monoxide	co	Smoking response, lipid peroxidation, CO pelsoning, vascular amooth muscle response	4.7	
Ethylene 🤾	C2H4	Oxidative stress_cancer	10.6	
Acetone	C,H,O	Ketosis, diabetes mullitus	7.3	

Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- · Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- · Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection
- Photofragmentation of nitro-based explosives (TNT)

Future Directions and Outlook of Chemical Trace Gas Sensing Technology

Monitoring of Broadband Absorbers

- Freon 125 (C₂HF₅)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals, e.g. chemical warfare agents
- Acetone (CH₃COCH₃)
 - Recognized biomarker for diabetes
- TATP (Acetone Peroxide, C₆H₁₂O₄)
 - Highly Explosive
- Uranium Hexafluoride (UF₆)
- Hydrazine

QEPAS MDAL Comparison with CRDS, ICOS & TDLAS Minimum Detectable Absorption Loss (MDAL) [cm-1/VHz] can be used for comparison of different techniques: $\sim 3 \times 10^{-11}$ • Cavity Ring Down Spectroscopy (CRDS): $\sim 3 \times 10^{-11}$ • Integrated Output Spectroscopy (ICOS): Multipass Gas Cell based TDLAS: ~ 2×10⁻¹¹ • QEPAS (Sept 2009) MDAL (DFB 100mW): 1.9×10-8 • QEPAS-OPBC MDAL (DFB 20 mW): 3.2×10^{-10} • QEPAS-OPBC + micro-resonator (estimated): ~ 7×10⁻¹² QEPAS-OPBC can be as sensitive as CRDS, ICOS and TDLAS and retain most of the performance merits of QEPAS Alex Kachanov, Skymoon Research R & D RICE

