

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
 - Automobile, Truck, Aircraft and Marine Emissions
- **Rural Emission Measurements**
 - Agriculture & Forestry, Livestock
- **Environmental Monitoring**

 - Atmospheric ChemistryVolcanic Emissions
- **Chemical Analysis and Industrial Process Control**
- Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Applications in Biomedical and the Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Sensitivity Enhancement Techniques for Laser Spectroscopy

ed by NSF ERC MIRTHE, NASA - JSC, DoE STTR and the Welch Foundat

Optimum Molecular Absorbing Transition

- Overtone or Combination Bands (NIR)
- Fundamental Absorption Bands (MID-IR)

Long Optical Pathlength

- Multipass Absorption Cell (White, Herriot, Chernin)
- Cavity Ringdown and Cavity Enhanced Spectroscopy
- Open Path Monitoring (with & without retro-reflector): Standoff and Remote Detection
- Fiberoptic Evanescent Wave Spectroscopy

Spectroscopic Detection Schemes

- Frequency or Wavelength Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy
- Laser Induced Breakdown Spectroscopy (LIBS)

Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE		
Sensitivity (% to ppt)	Optimum Wavelength, Power		
Selectivity (Spectral Resolution)	Stable Single Mode Operation and Narrow Linewidth		
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Mode Hop-free Wavelength Tunability		
Directionality or Cavity Mode Matching	Beam Quality		
Rapid Data Acquisition	Fast Time Response		
Room Temperature Operation	High wall plug efficiency, no cryogenics or cooling water		
Field deployable in harsh environments	Compact & Robust		

Quartz Enhanced Photoacoustic Spectroscopy

Alexander Graham Bell's "photophone" used a voice coil to modulate a mirror which transmitted sunlight to a receiver containing a selenium resistor. Nature, Sept. 23, 1880, pp. 500-503

Merits of QEPAS based Trace Gas Detection

- Very small sensing module and sample volume (a few mm³)
- · Extremely low dissipative losses
- · Optical detector is not required
- · Wide dynamic range
- · Frequency and spatial selectivity of acoustic signals
- Rugged transducer quartz monocrystal; can operate in a wide range of pressures and temperatures
- Immune to environmental acoustic noise, sensitivity is limited by the fundamental thermal TF noise: k_BT energy in the TF symmetric mode
- Absence of low-frequency noise: SNR scales as \sqrt{t} , up to t=3 hours as experimentally verified

QEPAS: some challenges

- Responsivity depends on the speed of sound and molecular energy transfer processes
- Sensitivity scales with laser power
- Effect of H₂O
- Cross sensitivity issues

Molecule (Host)	Frequency, cm-1	Premare, Torr	NNEA, rm ¹ W/Hz ¹⁴	Power, mW	NEC (v=1s)
10 t/P.,.	7306.75	60	1.9=10	93	0.09
CN (ale: 50% RH)*	653911	60	46010	50	0.10
7H* (N*).	6523.88	720	4 1418	57	0.03
H, Cris	6328.76	373	3 1=10**	60	0.06
H, (N)	6177.07	715	5 4=10	15	17
14 (Nr+1.2% H ₂ O)*	6057.09	760	3.7=10*	. 16	0.34
CO ₁ (breath ~58% REI)	6361 25	150	8.2×10*	45	40
H ₂ S (N ₂)*	6357.63	780	5.6=10	43	3
HC1 (N ₂ dey)	3739.26	760	5 2×10 ⁻⁸	15	0.7
CO2 (N2+L5% H2O) *	499 26	50	14410	44	18
CH ₂ O (N ₁ :75% RII)*	280490	75	3 7×10 ²⁸	7.2	012
CO (N _t)	2196 66	50	53+10"	13	0.5
CO (propylene)	2196 66	50	7 4=10*	6.5	014
N ₂ O (air+5%5F ₁)	2195 63	50	13-10"	19	0 007
NO (N ₁ +H ₂ O)	1900 07	250	7 5*10-0	100	0 001
C _i H ₂ OH (N ₂)**	19342	770	2 2×10 2	10	90
CaHFa (Na)***	1208 62	770	78-60	66	0.009
NH ₂ (Nill*	1046.39	110	16=10	20	0.006

Recent Applications of mid-infrared Laser based Trace Gas Sensors

Motivation for NH₃ Detection

- · Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver diseases)

new one RL, 965.35 cm

Molecule	Formula	Biological/Pathology Indication	Center wavelength (µm)	
Pentane	C,H,	Inflemmatory diseases, transplant rejection	6.8	
Ethana 🕺	C,H,	Lipid peroxidation and oxidation stress, lung canser (low ppby range)		
Carbon Dioxide	"CO'\"CO'	Halicobacter pylori infection (peptic ulcers, gestric cancer)	4.4	
Carbonyl Sulfide 🤾	cos	Liver disease, acute rejection in lung transplant recipients (10-500 pphv)	4.6	
Carbon Disulfide	CS,	Disulfirem treatment for elcoholism	8.5	
Ammonia 🎇	ин,	Liver and renal diseases, exercise physiology	10.3	
Formaldehyde 🎇	CH,O	Cancerous tumors (400-1500 ppbv)	8.7	
Nitric Oxide 🔀	NO	Nitric exide synthese activity, inflammatery and immune responses (e.g. asthma) and vestular smooth muscle response (6-100 ppb)	8.3	
Hydrogen Peroxide	н,о,	Airway inflammation, oxidative stress (1-5 ppbv)	7.9	
Carbon Monoxide	co	Smoking response, lipid peroxidation, CO palsoning, vescular smooth muscle response	4.7	
Ethylene 🎇	С,Н,	Oxidative stress, cancer	10,6	
Asstone	C,H,O	Ketosis, diabetes mailitus	7.3	

mw; duning range, 96535 cm 67 Mille reports, Sous Posle,

Motivation for Nitric Oxide Detection

- · Atmospheric Chemistry
- · Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - · Precursor of smog and acid rain
- · Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- · NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection
- Photofragmentation of nitro-based explosives (TNT)

Motivation for Nitric Oxide Detection in Beijing 2008

- Environmental pollutant
 - Product of fossil fuel combustion process (automobile and power plant emissions)
 - Precursor of smog and acid rain

Future Directions and Outlook of Chemical Trace Gas Sensing Technology

Ultra-compact Diode Laser based Trace Gas Sensor

Summary & Future Directions of Laser based Gas Sensor Technology

- Semiconductor Laser based Trace Gas Sensors

 - Compact, tunable, and robust High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)
 - Capable of fast data acquisition and analysis
 - Detected 14 trace gases to date: NH₃, CH₄, N₂O, CO₃, CO, NO, H₂O, COS, C₂H₄, H₂S, H₂CO, SO₃, C₃H₅OH, C₃HF₃, TATP and several isotopic species of C, O, N and H.

 New Applications of Trace Gas Detection

 The control of the control of
- Environmental Monitoring (urban quality NH₃, H₂CO, NO, isotopic ratio measurements of CO₂ and CH₄, fire and post fire detection; quantification of engine exhaustic.
- Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S)
- Medical & biomedical non-invasive diagnostics (NH₃, NO, N₂O and CH₃COCH₃)
 Ultra-compact, low cost, robust sensors (CO and CO₂)
- Future Directions and Collaborations
 - Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR intersubband and interband quantum cascade lasers
 - Further development of spectraphone technology
 - New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e sensitive concentration measurement broadband absorbers, in particular HCs, UF₈ and multi-species detection)
 - Development of optically gas sensor networks based on QEPAS and LAS

