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* Motivation: Wide Range of Gas Sensing Applications
* Key Characteristics of QC Lasers: October 2009

* Selected Applications of Trace Gas Detection

= NH; Detection for Environmental and Health Applications
= Nitric Oxide Detection

e Future Directions and Outlook

= Fiber coupled CW EC-QCL Nitric Oxide Detection System
= Detection of Broadband Molecular Absorbers
= Development of QC Laser Arrays

Ultra-compact QCL based Analyzers
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Wide Range of Trace Gas Sensing Applications

Urban and Industrial Emission Measurements

= |ndustrial Plants

= Combustion Sources and Processes (e.g. fire detection)
= Automobile, Truck, Aircraft and Marine Emissions

Rural Emission Measurements
= Agriculture & Forestry, Livestock

Environmental Monitoring
= Atmospheric Chemistry
= Volcanic Emissions

Chemical Analysis and Industrial Process Control

= Petrochemical, Semiconductor, Nuclear Safeguards, _
Pharmaceutical, Metals Processing, Food & Beverage Industries

Spacecraft and Planetary Surface Monitoring
= Crew Health Maintenance & Life Support
Applications in Health and the Life Sciences
Technologies for Law Enforcement and National Security .
Fundamental Science and Photochemistry |
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Existing Methods for Trace Gas Detection

Mass Spectroscopy <—-‘ Gas Chromatography

Non-Optical Chemical
Electro Chemical \
Chemiluminescence
Black Body Sources < Fourier Transform
Optical Gas Filter Correlation

Microwave Spectroscopy
Coherent Sources
Laser Spectroscopy




Basics of Optical Trace Gas Analyzers

| Absorber |

| Gas, Liquid or Solid
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Key Requirements: Sensitivity, specificity, rapid
data acquisition and multi-species detection

Beer-Lambert’s Law of Linear Absorption

Optimum Molecular Absorbing Transition
= NIR Overtone or Combination Bands

I(v)=1, e (V) Pa L . MIR Fundamental Absorption Bands
o(v) - absorption coefficient [cm™ atm]; L -
path length [cm] Long Optical Pathlengths
v - frequency [cm]; P,- partial pressure [atm] *  Multipass Absorption Cell White, Herriott)
. Cavity Enhanced, Cavity Ringdown &
(V) Intracavity Spectroscopy
. Open Path Monitoring (with retro-
AO‘(V) reflector); Standoff and Remote Detection
v . Fiberoptic evanescent wave Spectroscopy
a(v)=C-S(T)- g(v - vo) Spectroscopic Detection Schemes

_ . Wavelength or Frequency Modulation
C - total number of molecules of absorbing gas/atm/cm?® Balanced Detection

.em=3 -atm? - i
[molecule-cm -atm’] = Zero-air Subtraction

S —molecular line intensity [cm -molecule] . Photoacoustic Spectroscopy (PAS or
g(v- vy) — normalized spectral lineshape function [cm], QEPAS

(Gaussian, Lorentzian, Voigt) . Laser Induced Breakdown Spectroscopy



Molecular Absorption Spectra within the two Mid-IR
Atmospheric Windows
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Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS IR LASER SOURCE

Sensitivity (% to ppt) Optimum Wavelength, Power

Selectivity (Spectral Resolution) | Single Mode Operation and
Narrow Linewidth

Multi-gas Components, Multiple | Tunable Wavelength
Absorption Lines and Broadband

Absorbers

Directionality or Cavity Mode Beam Quality
Matching

Rapid Data Acquisition Fast Time Response
Room Temperature Operation No Consumables

Field deployable Compact & Robust




Key Characteristics of mid-IR QCL and ICL Sources-2009

Band - structure engineered devices C NS
(Emission wavelength is determined by layer thickness - MBE or MOCVD);! o))
mid-infrared QCLs operate from 3 to 24 um (AlInAs/GalnAs)

Compact, reliable, stable, long lifetime, and commercial availability

Fabry-Perot (FP), single mode (DFB) and multi-wavelength

Broad spectral tuning range in the mid-IR
(4-24 um for QCLs and 3-5 um for ICLs and GaSh diodes)

= 15cm? using injection current control for DFB devices

= 10-20 cmt usmg temperature control for DFB devices iyl s il
= >430 cmtusing an external grating element and FP chips with S :
heterogeneous cascade active region design; also QCL DFB r array

Narrow spectral linewidth
= CW:0.1-3MHz & <10Khz with frequency stabilization (0.0004 cm™1)
= Pulsed: ~ 300 MHz

High pulsed and cw powers of QCLs and ICLs at TEC/RT

temperatu res
= Pulsed and CW powers of ~ 1.5 W; high temperature operation ~300K

= >50 mW, TEC CW DFB @ 5 and 10 um

= >600 mW (CW FP) @ RT; wall plug efficiency of ~15 % at 4.6um;



Quantum Cascade (QC), Interband (1C) and GaSb Laser
Availability in October 2009

« Commercial Sources
= Adtech, CA
= Alpes Lasers, Switzerland & Germany
= Alcatel-Thales, France
= Corning, NY
= Hamamatsu, Japan
= Physical Sciences, Inc (Maxion Technologies, Inc
= Nanoplus, Germany

* Research Groups
= Harvard University
= Fraunhofer-1AF, Freiburg, Germany
= NASA-JPL, Pasadena, CA
= Naval Research Laboratories, Washington, DC
= Northwestern University, Evanston, IL
= Princeton University (MIRTHE), NJ
= State University of New York
= Technical University, Zuerich, CH
= University of Montpelier, France
= UK: Sheffield



Recent Applications of QCL based
Trace Gas Sensors



Motivation for NH, Detection

Monitoring of gas separation processes
Detection of ammonium-nitrate explosives
Spacecraft related gas monitoring

Monitoring NH; concentrations in the exhaust
stream of NO, removal systems based on selective
catalytic reduction (SCR) techniques

Semiconductor process monitoring & control
Monitoring of industrial refrigeration facilities
Pollutant gas monitoring

Atmospheric chemistry

Medical diagnostics (kidney & liver diseases)

% RICE



Mid-IR QEPAS based NH, Gas Sensor Architecture

Daylight Solutions CW EC-QCL
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Real-time Breath Monitor Interface
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Motivation for Nitric Oxide Detection

* Environmental pollutant

= Product of fossil fuel combustion process
(automobile and power plant emissions)

= Precursor of smog and acid rain
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Faraday Rotation Spectroscopy of Nitric Oxide
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Future Directions and Outlook of
Chemical Trace Gas Sensing Technology



High power fiber-coupled QCL for NO detection

CW Operation at 16.5C, 450mA

Mode Hop Free Tuning Range
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e LASER SOURCE EC-QCL
(Daylight Solutions, Inc)
= Tuning range 5.13-5.67 pum
= Maximum tuning Rate 38 nm/sec
= Highest optical power: —~250 mwW
= TE cooling, RT operation

Wavenumber (cm-1)

Collaboration with: V. Spagnolo
Politecnico Bari and CNR-LIT?



Fiber coupled QCL and QEPAS detection system

’

» High coupling efficiency of laser
output to fiber
»Beam size matching to QEPAS after

collimation

»Aspheric lenses for both coupling

and re-collimating.
»86% coupling efficiency

Beam
Waist

Fiber L F00um

output } -
FIBER T — | —
Material: AsSe;, — )
» 22 um core diameter imiting
. Slngle mode oper'a‘rion Aperture
* FC-PC termination ||
*AR Coated. I~

Collaboration with :V. Spagnolo, Politecnico Bari and CNR-LIT?3

Micro
resonator




Monitoring of Broadband Absorbers

* Freon 125 (C,HF;)

" Refrigerant (leak detection)

= Safe simulant for toxic chemicals, e.g. chemical
warfare agents

* Acetone (CH,;COCH,)
" Recognized biomarker for diabetes

* TATP (Acetone Peroxide, C;H,,0,)
= Highly Explosive
* Uranium Hexafluoride (UF)

% RICE



DFB QCL array performance

Emission spectrum of a DFB-QCL array
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http://www.optofluidics.caltech.edu/index.html

Ultra-compact Diode Laser based Trace Gas Sensor




Summary & Future Directions of Laser based Gas Sensor Technology

 Semiconductor Laser based Trace Gas Sensors

Compact, tunable, and robust
High sensitivity (<104) and selectivity (3 to 500 MHz)
Capable of fast data acquisition and analysis

Detected 14 trace gases to date: NH,, CH,, N, O, CO,, CO, NO, H,0, COS, C,H,, H,S,
H,CO, SO,, C,H:OH, C,HF; , TATP and several isotopic species of C, O, N and H.

* New Applications of Trace Gas Detection

Environmental Monitoring (urban quality — NH;, H,CO, NO, isotopic ratio
measurements of CO, and CH,, fire and post fire detection; quantification of engine
exhausts)

Industrial process control and chemical analysis ( NO, NH;, H,0, and H.,S)
Medical & biomedical non-invasive diagnostics (NH;, NO, N,O and CH;COCH,)
Ultra-compact, low cost, robust sensors (CO and CO,)

e Future Directions and Collaborations

Improvements of the existing sensing technologies using novel, thermoelectrically
cooled, cw, high power, and broadly wavelength tunable mid-IR intersubband and
interband quantum cascade lasers

Further development of spectraphone technology

New applications enabled by novel broadly wavelength tunable quantum cascade
lasers based on heterogeneous EC-QCL (i.e sensitive concentration measurements of
broadband absorbers, in particular HCs, UF; and multi-species detection)

Development of optically gas sensor networks based on QEPAS and LAS %‘vi RICE
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