Image: Recent SourcesRecent Cascade Laser Sources: Recent Advances and Applications

<u>F.K. Tittel</u>, L. Dong, J. Doty, A.A. Kosterev, R. Lewicki & D. Thomazy Rice Quantum Institute, Rice University, Houston, TX, USA http://ece.rice.edu/lasersci/

- Motivation: Wide Range of Gas Sensing Applications
- Key Characteristics of QC Lasers: October 2009
- Selected Applications of Trace Gas Detection
 - NH₃ Detection for Environmental and Health Applications
 - Nitric Oxide Detection
- Future Directions and Outlook
 - Fiber coupled CW EC-QCL Nitric Oxide Detection System
 - Detection of Broadband Molecular Absorbers
 - Development of QC Laser Arrays
 - Ultra-compact QCL based Analyzers
 - **3**3
- Work supported by NSF, NASA, DoE and the Robert Welch Foundation

OUTLINE

FACCS 2009

Louisville, KY

Oct 18-22, 2009

Wide Range of Trace Gas Sensing Applications

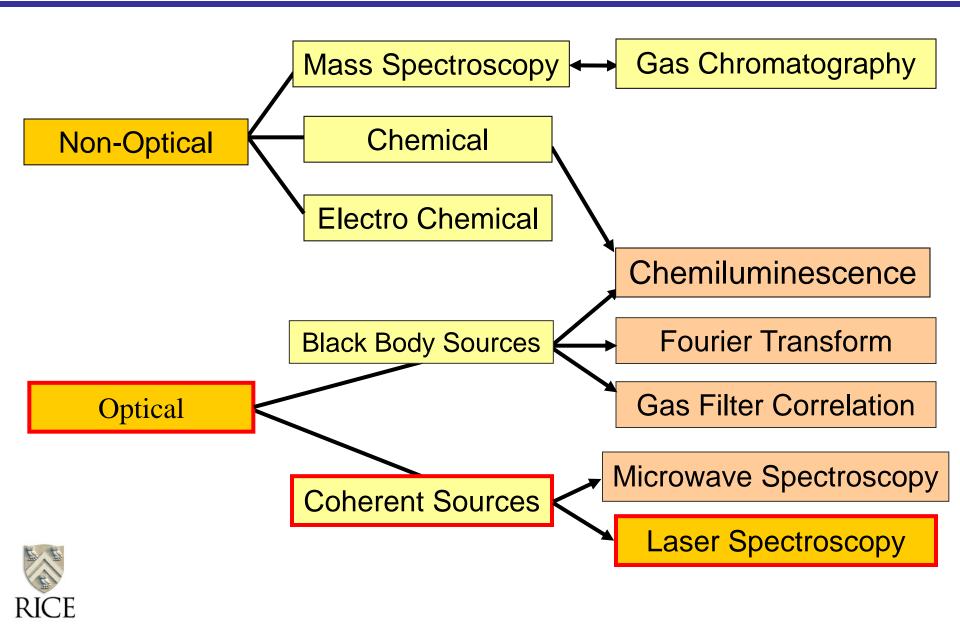
• Urban and Industrial Emission Measurements

- Industrial Plants
- Combustion Sources and Processes (e.g. fire detection)
- Automobile, Truck, Aircraft and Marine Emissions

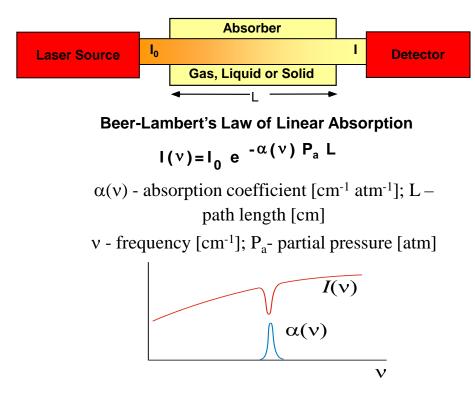
• Rural Emission Measurements

• Agriculture & Forestry, Livestock

Environmental Monitoring


- Atmospheric Chemistry
- Volcanic Emissions

Chemical Analysis and Industrial Process Control


- Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Applications in Health and the Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Existing Methods for Trace Gas Detection

Basics of Optical Trace Gas Analyzers

$\alpha(\mathbf{v}) = \mathbf{C} \cdot \mathbf{S}(\mathbf{T}) \cdot \mathbf{g}(\mathbf{v} - \mathbf{v}_0)$

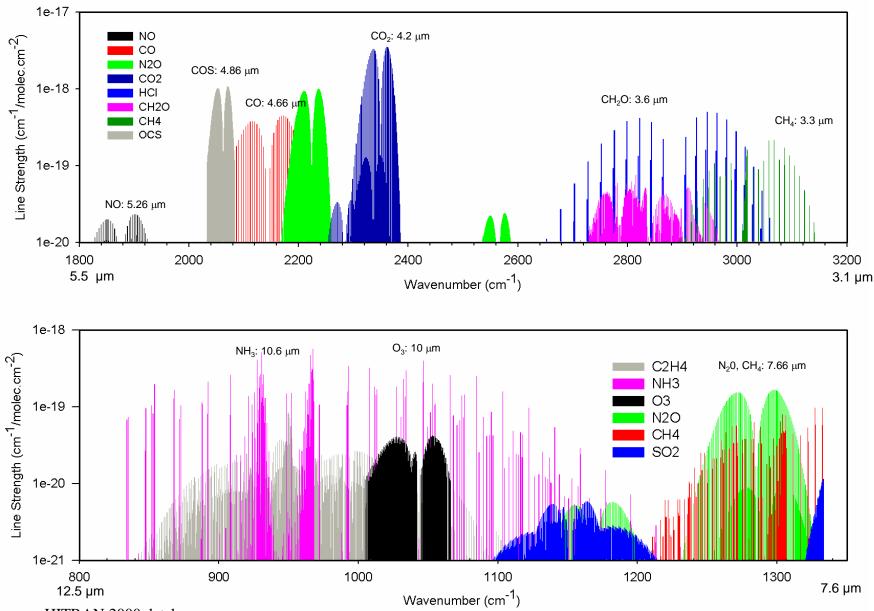
C - total number of molecules of absorbing gas/atm/cm³ [molecule·cm⁻³ \cdot atm¹]

S – molecular line intensity [cm \cdot molecule⁻¹]

 $g(v - v_0)$ – normalized spectral lineshape function [cm], (Gaussian, Lorentzian, Voigt) **Key Requirements:** Sensitivity, specificity, rapid data acquisition and multi-species detection

Optimum Molecular Absorbing Transition

- NIR Overtone or Combination Bands
- MIR Fundamental Absorption Bands


Long Optical Pathlengths

- Multipass Absorption Cell White, Herriott)
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retroreflector); Standoff and Remote Detection
- Fiberoptic evanescent wave Spectroscopy

Spectroscopic Detection Schemes

- Wavelength or Frequency Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy (PAS or QEPAS
- Laser Induced Breakdown Spectroscopy

Molecular Absorption Spectra within the two Mid-IR Atmospheric Windows

Source: HITRAN 2000 database

Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE
Sensitivity (% to ppt)	Optimum Wavelength, Power
Selectivity (Spectral Resolution)	Single Mode Operation and Narrow Linewidth
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Tunable Wavelength
Directionality or Cavity Mode Matching	Beam Quality
Rapid Data Acquisition	Fast Time Response
Room Temperature Operation	No Consumables
Field deployable	Compact & Robust

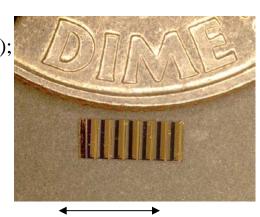
Key Characteristics of mid-IR QCL and ICL Sources-2009

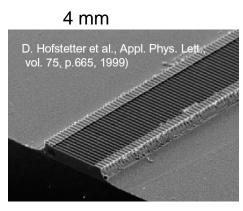
• **Band – structure engineered devices** (Emission wavelength is determined by layer thickness – MBE or MOCVD); mid-infrared <u>QCLs operate from 3 to 24 µm (AlInAs/GaInAs)</u>

- Compact, reliable, stable, long lifetime, and commercial availability
- Fabry-Perot (FP), single mode (DFB) and multi-wavelength

• Broad spectral tuning range in the mid-IR

(4-24 μ m for QCLs and 3-5 μ m for ICLs and GaSb diodes)


- 1.5 cm⁻¹ using injection current control for DFB devices
- 10-20 cm⁻¹ using temperature control for DFB devices
- > 430 cm⁻¹ using an external grating element and FP chips with heterogeneous cascade active region design; also QCL DFB r array


<u>Narrow spectral linewidth</u>

- CW: 0.1 3 MHz & <10Khz with frequency stabilization (0.0004 cm⁻¹)
- Pulsed: ~ 300 MHz

<u>High pulsed and cw powers of QCLs and ICLs at TEC/RT</u> <u>temperatures</u>

- Pulsed and CW powers of ~ 1.5 W; high temperature operation ~300K
- >50 mW, TEC CW DFB @ 5 and 10 μ m
- > 600 mW (CW FP) @ RT; wall plug efficiency of ~15 % at 4.6 μ m;

			-
45 nm			
+			

6

Quantum Cascade (QC), Interband (IC) and GaSb Laser Availability in October 2009

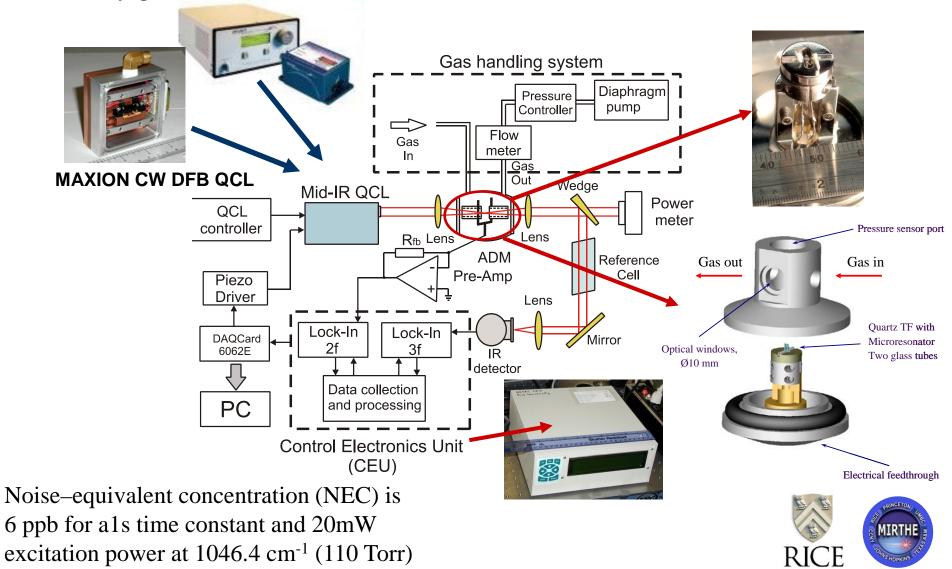
Commercial Sources

- Adtech, CA
- Alpes Lasers, Switzerland & Germany
- Alcatel-Thales, France
- Corning, NY
- Hamamatsu, Japan
- Physical Sciences, Inc (Maxion Technologies, Inc
- Nanoplus, Germany

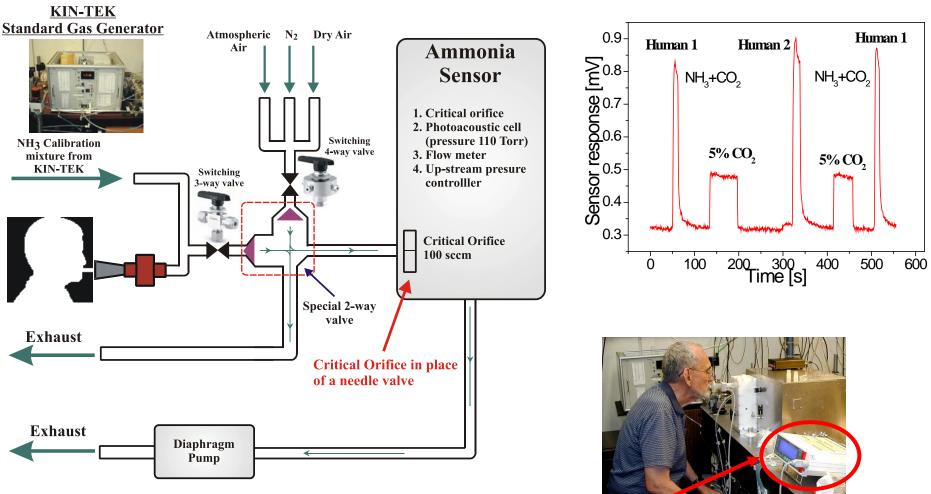
Research Groups

- Harvard University
- Fraunhofer-IAF, Freiburg, Germany
- NASA-JPL, Pasadena, CA
- Naval Research Laboratories, Washington, DC
- Northwestern University, Evanston, IL
- Princeton University (MIRTHE), NJ
- State University of New York
- Technical University, Zuerich, CH
- University of Montpelier, France
- UK: Sheffield

Recent Applications of QCL based Trace Gas Sensors


Motivation for NH₃ Detection

- Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver diseases)



Mid-IR QEPAS based NH₃ Gas Sensor Architecture

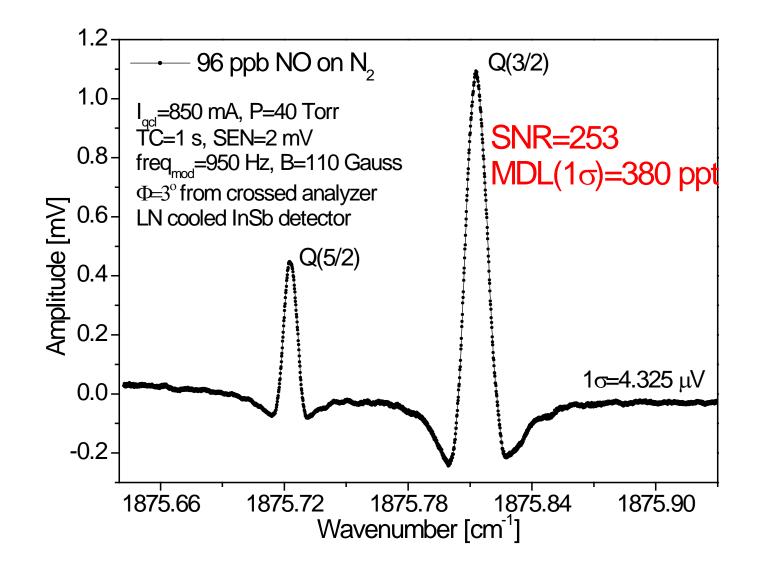
Daylight Solutions CW EC-QCL

Real-time Breath Monitor Interface

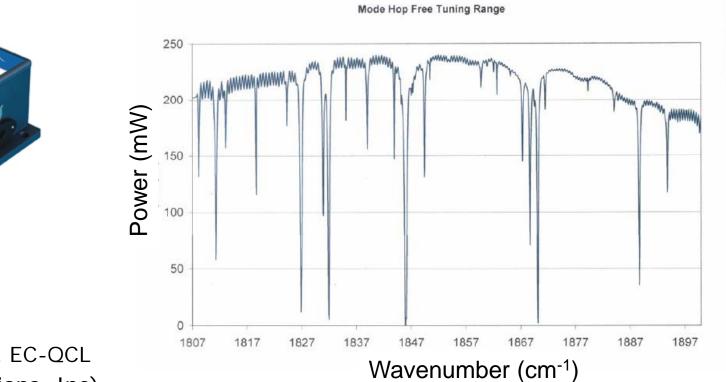
- Controlled flow
- Continuous control of mouth pressure
- Continuous monitoring of CO₂ concentration (capnograph) and its use in QEPAS data processing

T.Risby: 12:00 Sept.7 & Poster

Motivation for Nitric Oxide Detection

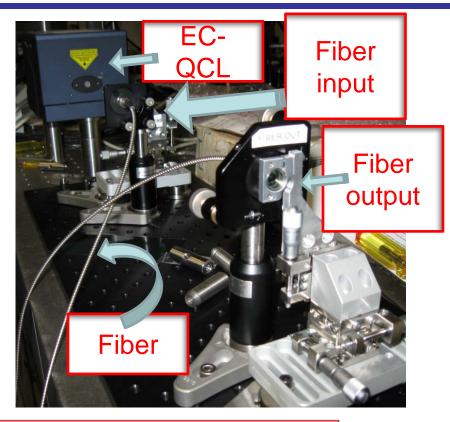

- Environmental pollutant
 - Product of fossil fuel combustion process (automobile and power plant emissions)
 - Precursor of smog and acid rain

Faraday Rotation Spectroscopy of Nitric Oxide



Future Directions and Outlook of Chemical Trace Gas Sensing Technology

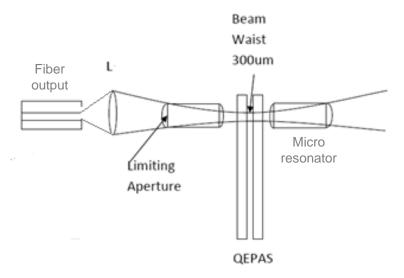
High power fiber-coupled QCL for NO detection


CW Operation at 16.5C, 450mA

- LASER SOURCE EC-QCL(Daylight Solutions, Inc)
 - Tuning range 5.13-5.67 μm
 - Maximum tuning Rate 38 nm/sec
 - Highest optical power: ~250 mW
 - TE cooling, RT operation

Collaboration with: V. Spagnolo Politecnico Bari and CNR-LIT³

Fiber coupled QCL and QEPAS detection system



High coupling efficiency of laser output to fiber

Beam size matching to QEPAS after collimation

>Aspheric lenses for both coupling and re-collimating.

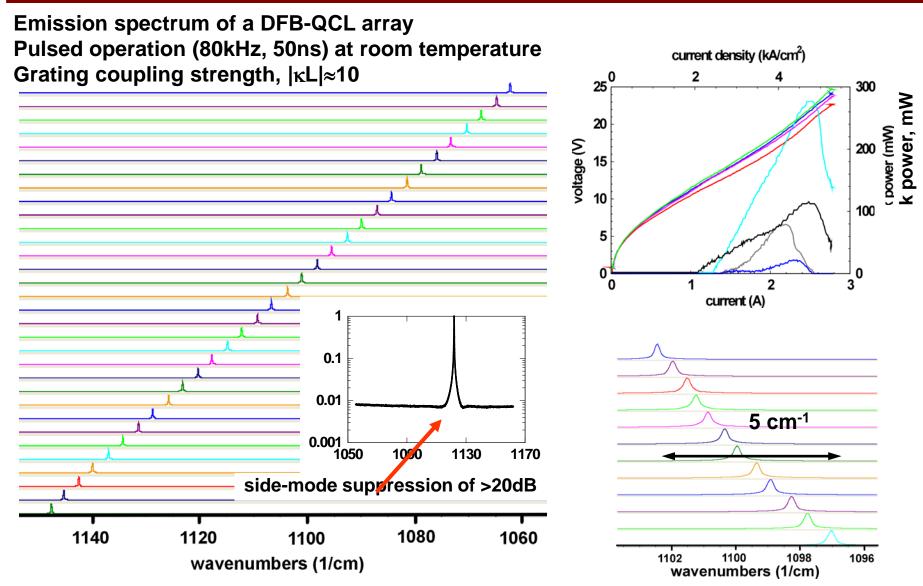
≥86% coupling efficiency

Collaboration with :V. Spagnolo, Politecnico Bari and CNR-LIT³

FIBER

Material: AsSe₃,

- 22 µm core diameter
- Single mode operation
- FC-PC termination
- •AR Coated.


Monitoring of Broadband Absorbers

- Freon 125 (C_2HF_5)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals, e.g. chemical warfare agents
- Acetone (CH₃COCH₃)
 - Recognized biomarker for diabetes
- TATP (Acetone Peroxide, C₆H₁₂O₄)
 Highly Explosive
- Uranium Hexafluoride (UF_6)

Temperature tuning by DC current

Lee, Belkin, et al., APL 2007

Ultra-compact Diode Laser based Trace Gas Sensor

Summary & Future Directions of Laser based Gas Sensor Technology

Semiconductor Laser based Trace Gas Sensors

- Compact, tunable, and robust
- High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)
- Capable of fast data acquisition and analysis
- Detected 14 trace gases to date: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, H₂S, H₂CO, SO₂, C₂H₅OH, C₂HF₅, TATP and several isotopic species of C, O, N and H.
- New Applications of Trace Gas Detection
 - Environmental Monitoring (urban quality NH₃, H₂CO, NO, isotopic ratio measurements of CO₂ and CH₄, fire and post fire detection; quantification of engine exhausts)
 - Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S)
 - Medical & biomedical non-invasive diagnostics (NH₃, NO, N₂O and CH₃COCH₃)
 - Ultra-compact, low cost, robust sensors (CO and CO₂)

Future Directions and Collaborations

- Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR intersubband and interband quantum cascade lasers
- Further development of spectraphone technology
- New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e sensitive concentration measurements of broadband absorbers, in particular HCs, UF₆ and multi-species detection)
- Development of optically gas sensor networks based on QEPAS and LAS