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* Motivation: Chemical Sensing Applications
= Fundamentals of Laser Absorption Spectroscopy
» New Laser Sensing Technologies (QEPAS)
= Selected Applications of Trace Gas Detection
* Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)
= NH; Detection for Environmental Applications
= Nitric Oxide Detection (LAS & Faraday Rotation Spectroscopy)
* Monitoring of Broadband Absorbers
* Future Directions of Laser based Gas Sensor
Technology
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Wide Range of Trace Gas Sensing Applications

Urban and Industrial Emission Measurements
s Industrial Plants
s Combustion Sources and Processes (e.g. fire detection)
= Automobile, Truck, Aircraft and Marine Emissions
* Rural Emission Measurements
= Agriculture & Forestry, Livestock
« Eavir al Moni ing
» Atmospheric Chemistry
» Volcanic Emissions
Chemical Analysis and Industrial Process Control

= Petrochemical, Semiconductor, Nuclear Safeguards, .
Pharmaceutical, Metals Processing, Food & Beverage Industries

» Spacecraft and Planetary Surface Monitoring
= Crew Health Maintenance & Life Support
- Applications in Biomedical and the Life Sciences
+ Technologies for Law Enforcement and National Security
* Fund tal Sci and Photochemistry =

Greenhouse Gases and Climate Change

Kyoto Protocol Dec. 1997

and Copenhagen Dec. 2009) poe — ——

= Carbon credit and carbon oy ".‘,_ - e "
trading e Enlia

Need to measure and locate 1" | uﬁfu A T

all sources and sinks
. Mus't be in real time and
continuous
Multiple greenhouse gases
= Carbon dioxide
= Methane
= Nitrous oxide

Existing Methods for Trace Gas Detection

, Mass Spectroscopy H Gas Chromatography ]
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Black Body Sources % Fourier Transform

‘1 NDIR Analyzer ]

Microwave Spectroscopy

Laser Spectroscopy l

Coherent Sources

Basics of Optical Trace Gas Analyzers
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Kev Requirements: Sensitivty, specificity, rapd
data acquisition and multi-spectes detection
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Boer-Lambert's Law of Linear Absorplion
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Optimum Molecular Absorbing Transition

= NIR Overtone or Combination Bands

=g e = MIR Fundamental Absorption Bands
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Long Optical Pathiengths

Multipass Absorption Cell White, Herriott)
Cavity Enhanced, Cavity Ringdown &
Intracavity Spectroscopy

Open Path Monitonng (with setro-

av) reflector), Standoff and Remote Detection
=3 = Fiberopiic evanescent wave Spectroscopy

Spectroscopic Detection Schemes
‘Wavelength or Frequency Modulation

av)=C ST gv-ve

C - total nusmiber of molecules of absorbug gas‘atmvem®

= Balanced Detection
|molecule car* atm'] «  Zero-air Subtraction
§ - molecular Ime mtensity [cm -malecule-'| = Photoacoustic Spectroscopy (FAS or
§(v- vy - nonmalzzed speciral Imeshape function jem], QEPAS 5

[Gaussian, Lorentzian, Vorgt) = NICE-OHMS, LIBS and LIF

Molecular Absorption Spectra within two Mid-IR
Atmospheric Windows
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Mid-IR Source Requirements for Laser Spectroscopy

Key Characteristics of mid-IR QCL and ICL Sources - Nov 2009

REQUIREMENTS IR_LASER SOURCE
Sensitivity (% to ppt) Optimum Wavelength, Power
Selactivity (S| I R Single Mode Operation and

Narrow Linewidth

Multi-gas Components, Multiple | Tunable Wavelength
Absorption Lines and Broadband

Absorbars -
Directionality or Cavity Mode Beam Quality
Matching

Rapid Data Acquisition Fast Time Response
Room Temperature Operation No Consumables
Field deployable Compact & Robust

Band - structure engineered devices
(Emission wavelength 15 determined by layer thickness - MBE or MOCVD);r
mud-infrared QCLs operate from 3 to 24 um (AllnAs/GalnAs) \_/

Compact, reliable, stable, long hictime, and commicreial availability
Fabry-Perot (FP), single mode (DFB) and multi-wavelength

+ Broad s%ctml tuning range in the mid-IR
(@24 pm “Ls and 3-5 pm for ICLs and GaSb dsodes)
= L.5cm using iyjection current control for DFB devices
= 10-20cm’’ using lemperature control for DFB devices
= =430 cm’ using an external grating clement and FP chips with
heterogencous cascade active region desigm: also QCL DFB Amay
» Narrow spectral linewidth
= CW 01-3MHz & <10Khz with frequency stabslization (OQ)OJ em™)
= Pulsed. ~ 300 MHz

» High pulsed and cw powers of QCLs at TEC/RT
temperatures
= Pulsed and CW powers o 34 Wand 3 W respectively, igh temperature
operation ~300K
>280mW, TECCW DFB @' 5 yum
> 600 mW (CW FP) i@ RT, wall plug efficiency of =17 %a at 4 6pm,
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Quantum Cascade (QC), Interband (IC) and Gasb Laser
Availability in November 2009

» Commercial Sources
= Adtech, CA
= Alpes Lasers, Switzerland & Germany
= Alcatel-Thales, France
= Hamamatsu, USA & Japan
= Maxion Technologies, Inc (Physical Sciences, Inc), MD
= Nanoplus, Germany
« Pranalytica, CA

 Research Groups
= Harvard University
= Fraunhofer-IAF, Freiburg, Germany
» NASA-JPL, Pasadena, CA
= Navai Research Laboratones, Washington, DC
« Northwestem University, Evanston, Il
= Pnnceton University (MIRTHE), NJ
= State University of New York
= Technical University, Zuerich, CH
= University of Montpelier, France

° » UK: Sheffield

Quartz Enhanced
Photoacoustic Spectroscopy

From conventional PAS to QEPAS

Quartz Tuning Fork as a Resonant Microphone

Maidie: wmnmennes
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15mm Umaque properties
; - Extremely low internal losses:
* Q~10000 at 1 atm
» Q~100000 in vacuum
Acoustic quadrupole geometry
= Low sensitivity to external sound
Large dynamic range — linear from
thermal noise to breakdown
deformation
= 300K noise: x~10-"* cm
« Breakdown: x~10-2 cm
- Wide temperature range: from
1.56K (superfluid helium) to ~700K
- Low cost (<$1)

Other parameters
- Resonant frequency ~32.8 kHz

+ Force constant ~26800 N/m
. Ellectromechanlml coefficient ~7=10%
i m .
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QEPAS spectrophone

Excitation

Micro-resonator tu

Must be close to QTF but not
touch TF (30-50 mm gaps)

Optimum inner diameter 0 41
mm (10% lower signal with 0 6
mm diameter tubes)

Each micro-resonator tube ~5mm
long (~1/2 for sound at 32 8 kHz)

Gain: x10 to %20

Windows

Must be tilted to prevent
reflected light from entering
micro-resonator tubes

Exact positioning is not
important, to the best of our
current knowledge
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Typical QTF Resonance Curves
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Alignment-free QEPAS Absorption Detection Module

QEPAS SNR Enhancement of Acoustic Microresonator

Junction

Microresonator tubes
Musi be cloga to OTF but not touchmg (1. 30-50um gaps).
Each tube is ~ Smm long (-2 for sound at 32.8 kHz)

QEPAS Signal Gain: » 8 to %20 dependng on pressure & gas

% RICE

What about QEPAS Modeling ?

MIRTHE UMBC team ‘N Petra, J. Zweck, A. A. Kosterev, S E. Minkoff and D
Thomazy, “Theoretical Analysis of a Quartz-Enhanced Photoacoustic
Spectroscopy Sensor”, Appl. Phys B 94, 673-680 (2009)

Also: S L. Firebaugh, F. Roignant & E A. Terray, “Modelling the Response of
Photoacoustic Gas Sensors™, Comsol Conf, Boston, MA , Oct 8-10,2009

Comparative Sizes of QEPAS & PAS ADMs

Optical multipass cell (100 m)
=70 cm, ¥-3000 cm®

QEPAS spectraphonc: L5
I~1cm, F~0.05 cm®

Resonant photoacoustic cell (1000 Hz):
#~60 cm, §~50 cm?




Merits of QEPAS based Trace Gas Detection

WM QEPAS signal for H,O line @ 7306.75 cm’!, 48 ppmv

+ Very small sensing module and the sample volume (a few mm®)

- Optical detector is not required

> Wide dynamic range

» Rugged transducer — quartz monocrystal; can operate in a wide range of
pressures and temperatures

- Immune to environmental acoustic noise, sensitivity is limited by the
fundamental thermal TF noise: &,7 energy in the TF symmetric mode,
directly observed

+ Absence of low-ﬁqzumcy noise: SNR scales as Vr, up to =3 hours
experimentally verified

QEPAS: some challenges

< Responsivity depends on the speed of sound and molecular energy
transfer processes
= Sensitivity scales with laser power
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Line locking based on 3f detection

Principal Architecture of a QEPAS Gas Sensor
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Long-term Averaging: H,S, Allan Variance Ana)ysis
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QEPAS Performance for 13 Trace Gas Species (Nov. ‘09)
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