

Motivation: Laser Spectroscopy for Breath Analysis

Laser Absorption Spectroscopy (LAS)

- LAS provides rapid, sensitive and <u>selective</u> measurements of target gases
- LAS is capable of measuring multiple target gases with a single laser (important for standardizing exhaled breath analysis)
- LAS has been shown to be robust (e.g. – aircraft measurements)

(Immediate Candidate Markers)					
Molecule	Formula	Trace Concentration in Brenth (ppb)	Biological/Pathology Indication		
Nitric Oxide	NO	6 - 100	inflammatory and minimize responses (e.g., asthma, COPD), vascular smooth muscle response		
Carbon Monexide	co	400 - 3000	Hyperbularubinemia, Smoking response, CO poisoning, vascular smooth muscle response, platelet aggregation		
Hydrogen Peroxide	H ₂ O ₃	1-5	Airway Inflatanation, Oxidative stress		
Carbonyl Suilide	ocs	100 1000	Laver disease and acute allograft rejection hing tramplant recepterits		
Formsldehyde	HCHO	400 - 1500	Cancerous tumora, breast cancer		

Molecule	Formula	Truce Concentration in Breath (ppb)	Biological/ Pathology Indication
Pentane	CH ₁ (CH ₂) ₂ CH ₃	4 - 20	Lipid peroxidation, oxidative stress associated with inflammatory diseases, immune responses, transplant rejection, breast and lung cancer
Ethane	C₂H₀	3 = 100	Lipid peroxidation and oxidative stress
Carbon Dioxide	13CO3/12CO2	4 - 5 x 10 1	Marker for Helicobacter pylori infection, GI and hepatic function, drug clearances rates
Methane	CH ₄	1000 - 8000	Digestive function, colonic fermentation
Ammonia	NH3	100 - 500	Hepatic encephalopathy, liver cirrhosis, fasting response
Accione	CH ₃ COCH ₃	1000 - 5000	Fasting response, diabetes mellitus response, ketosis

Key Characteristics of Quantum Cascade Lasers

- Laser wavelengths cover the entire range from 3.4 to 24 μm determined by layer thickness of same materials
- High power and single frequency (100 mW cw, 50 mW average, pulsed)
- Continuous tuning by temperature (~10 cm⁻¹) or current (~3 cm⁻¹)
- · Reliable, robust, and be operated with compact systems

Capable of near-room temperature operation

• Pulsed: up to +150°C (S

(System Design)

• CW: down to -63°C

3°C (Gas Cell Design)

Exhaled Nitric Oxide

- "Asthma is a chronic inflammatory disorder of the lower airways..."
 - Working definition (NHLBI, 1995)
- eNO has a strong correlation with eosinophilic airway inflammation, considered a hallmark of bronchial asthma
- Main Applications:
 - Monitoring chronic airway inflammation by longitudinal eNO breath measurements
 - Monitor the effectiveness and compliance of anti-inflammatory therapies

Exhaled Nitric Oxide - Cont'd

- 30 to 80% of ex-asthmatics develop symptoms later in life and most have increased airway responsiveness to methacholine
- Suggested that ongoing airway inflammation is the principal cause of progressing airway abnormalities
- Airway symptoms <u>correlate poorly</u> with airway obstruction and indices of asthma severity
- Adaptation of "perceptiveness" for bronchoconstriction
- · van den Toom et. al. recommended:

"adolescents who seem to have outgrown asthma should be monitored for years after symptoms have disappeared, ... using non-invasive measurements of airway inflammation, such as eNO levels..."

van den Toom et. al., Current Opinion in Pulmonary Med., 2003

Point of Care Exhaled Nitric Oxide Instrumentation

• Chemiluminescence

- Used for over ten years to measure eNO in both children and adults
- FDA approval efforts are ongoing (product code MXA)
- Inter-study reproducibility issues
- ATS has established recommendations for both online and offline measurements. Stresses the need for patient to maintain constant exhalation force

Laser Absorption Spectroscopy (LAS)

- Used to measure eNO in both children and adults
- Demonstrated self-calibrated operation using exhaled CQ₂
 eliminating the need for the patient to maintain constant exhalation
 pressures: important when considering a pediatric patient

Summary and Future Directions

- · Quantum Cascade Laser based Trace Gas Sensors
 - · Compact, tunable, and robust
 - High sensitivity (<10-4) and selectivity (3 to 300 MHz)
 - Fast data acquisition and analysis
 - Detected trace gases NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, OCS, C₂H₃OH and isotopic species
- Applications in Exhaled Breath Analysis
- eNO asthma, and alveolitis (e.g. interstitial pneumonia or idiopathic pulmonary fibrosis)
- ET-CO: neonatal non-hemolytic hyperbilirubinemia
- OCS acute allograft rejection in lung transplant recipients
- Future Directions
 - Develop advanced compact optical gas cell for rapid eNO analysis
 - Begin clinical studies of exhaled OCS analysis
 - Place a robust and portable point-of-care mid-IR laser spectrometer in clinical setting

Target Gases -3

Malecule	Formula	Truce Concentration in Breath (ppb)	Biological/ Pathology Indication
Hydrogen Sulfide	H ₂ S	10 - 30	Heart Diseases
Methyl mercaptan	СН³гН	10 - 30	Oral infection, halitosis
Dimethyl sulfide	C2H,S	2 - 20	Oral infection, halitosis
Isoprene	CH ₂ = C(CH ₃)- CH=CH ₂	40 - 400	Cholesterol synthesis, scute myocardial infarction, ozone exposure, hemodialysia response, sleep/wakefulness monitoring
Acetylene	C ₂ H ₂	Additive	Exogenous tracer to measure pulmonary function and cardiac output
Sulfur bexafluoride	SF ₆	Additive	Exogenous tracer to measure pulmonary function

