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» Basics of spectroscopic detection

» QGas sensors based on pulsed QC-DFB lasers
« QEPAS - a new photoacoustic method

* Summary

Absorption Spectroscopy
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IR Source Requirements for Spectroscopy

REQUIREMENTS SOURCE
« Sensitivity - Power
« Specificity * Line Width

* Multi-gas Components  ° Tunable
* Directionality * Beam Quality
+ Rapid Data Acquisition - Response

* Room Temperature
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Key Characteristics of Quantum Cascade Lasers

= Laser wavelengths cover entire range from 3.5 to 66 um
determined by layer thickness of same material
Intrinsically high power lasers (determined by number
of stages)
= CW:~100 mW @ 80°K, mWs @300 °K
= Pulsed: 1 W peak at room temperature, ~50 mW avg.
@ 0 °C (up to 80 % duty cycle)
+ High Spectral purity
- Wavelength tuning by current or temperature scanning
» High reliability: low failure rate, long lifetime, robust
operation and reproducible emission wavelengths

s RICE

Multiple species can be detected even with a short
wavelength scan
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Absorption Spectrum of Room Air
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QC-DFB Laser: Pulsed vs. CW

ADVANTAGES

SPECIFIC ISSUES

« Laser can be operated st near-
room temperature (TE cooling)

» Facilitates temperature controi
« No consumables (liquid N3}
« Unatiended remote monitoring

« Decreased instrument size &
weight

« Broad asymmetric linewidth
{~200 MHz FWHM) related to
heating during the pulse

« How to tunc the frequency
o Reduced average power

« More sophisticated electronics arc
required for driving QC laser and
data acquisition are required
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QC Laser Housing

Synchronous Frequency Manipulation
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Fast cycling of the laser frequency with a
subthreshold cisrent and slow scanning

lincarization of scan) with temperature (wavelength
modulztion)
A. A. Kosterev, F.K_ Tittel, C. Gmachl, F. Capasso, D. L. Siveo, I N
Buillargeon, A, L. Hutchinson, and A. Y. Cho, “Trace-gas detection in s
ambient air with 2 thermoclectrically cooled, pulsed quantum-cascade RICE

distributed feedback baser”, Appl. Opt. 39, 6866-6372 (2000)

NASA Water Recovery System

Ammonia Absorption Spectrum
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Single-Channel Gas Sensor

DAQCard-1200

NH,; Sensor Based on Pulsed 10.05 pm laser

One IR detector

Sensitivity ~0.3 ppm

Ammonia Absorption near 993 cm!
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Energy Distribution of the QC Laser Pulses
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Two-Channel Data Acquisition
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CO Absorption: Ambient Air Sample
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CO Concentration in Two Gas Cylinders
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CO Concentration in the Laboratory
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Molecules detected with QC Lasers at Rice

Resonant Photoacoustic Spectroscopy

Modeazle ‘Wavedength and method

"'CH, and "'CH,, N/O, 8 pm, CW and pulsed, ambicnt air,
100 m pathlength, Voigt fit and

H;0 and HDO lincar segression analysis

C,H,0H 8 pm, CW, 100 m pathlength, lincar
regression analysis

NO 5.2 um, CW, ICOS and CRDS

NH, 10 pm, pulsed, 1 m pathlength

[o¢] 4.6 pm, pulsed, 2mbient aw, 1 m
pathlength, reference chamnel

CO; 15.5 um, pulsed, ambient air, I m
pathlength
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Quartz-Enhanced PAS (QEPAS)

No cavity! ® /_\

High-Q solid state Micron#fone
crystal

QUARTZ

Quartz Watch Tuning Fork

£-32.768 Hz |
Q>10,000 |




Possible Configurations

QEPAS Module

QEPAS Setup
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Summary

R tly d QEPAS tedt

+Pulsed QC-DFB lasers can be used to create portable

(ultra)sensitive chemical detectors for gas phase monitormng based
on direct absorption or wavelength modulation spectroscopy

+CW QC-DFB lasers offer additional opportunities tut presently

require cryogenic cooling, thus limiting the applications.

1s a promusing approach to
multipoint sensing, It can be combined either with readily
available near-IR diode lasers for moderate sensitivity, or with
non-cryogenic mid-IR CW QC-DFB lasers (which are expected
to become available soon) for high sensitivity.




