Presentation Outline - Motivation and Background for Physiological Monitors based on Expired Human Breath - · Target Trace Gases and Pathologies - Ultra-Sensitive Gas Detection based Quantum Cascade Laser (QCL) Absorption - Examples of QCL-based Breath Measurements - · Program Plan and Status ### Trace Reactive Gases As Physiological Messengers - NO production is tied to numerous physiological processes - · vasorelaxation, inflammation, thrombosis, immunity - · reduced NO production associated with atherosclerosis and ulcers - enhanced NO production associated with asthma, endotoxin shock, diabetes, and edema - CO production is important in vascular muscle cell physiology and platelet aggregation - Trace levels of these and other breath species are associated with numerous physiological pathologies - Typical endogenous production rates are—10 pmol/min requiring trace gas detection levels in the range of 1 to 10 ppbv. # Project Technical Summary Overall Project Goal: To develop and demonstrate a prototype sensor for multi-gas analysis in exhaled human breath based on a Quantum-Cascade Laser Sensor with Cavity Enhanced Spectroscopy ### Multi-Gas QCL-Based Breath Analyzer - Cavity-enhanced optical cells can provide ~100 m of optical pathlength in 2 cm of physical pathlength - Each cell capable of ppb-level detection of trace breath radicals (NO, CO); organic biomarkers (pentane, ethane, formaldehyde, acetone, isoprene); and other breath species (ammonia, isotopic CO₂, etc.) - Configurable array of stacked optical cells arranged along a common breath flow axis should permit rapid, non-invasive assay of basic biological functions with no consumables | Molecule | Formula | Concentration
in Breath (ppb) | Biological/Pathology Indication | |----------------------|--------------------------------------|----------------------------------|--| | Nitric Oxide | NO | 6 - 100 | inflammatory and ammane responses
(e.g., asthma, COPD, IBD), vascular
smooth muscle response | | Carbon
Monoxide | co | 400 - 3000 | Smoking response, CO possoning, vaccular smooth muscle response, platele aggregation | | Hydrogen
Peroxide | H ₂ O ₃ | 1 - 5 | Ozadatave stress | | Carbon Dioxide | CO ₂ | 4 - 5 x 10 ¹ | Hypoxia, pulmonary diffusing capacity | | Carbon Dioxide | 12CO ³ /12CO ² | 4 = 5 x 10 ³ | Marker for Helicobacter pylon infection,
GI and hepitac function | | Malecule | Formula | Truce
Concentration in
Breath (ppb) | Biological/
Pathology Indication | |--------------|---|---|---| | Pentane | СН ₃ (СН ₂) ₃ СШ ₃ | 4 - 20 | Lipid peroxidation, exidative stress
associated with inflammatory diseases,
immune responses, transplant rejection,
breast and lung cancer | | Fihane | C ₂ H ₆ | 3 - 100 | Lipid peroxidation and exidative stress | | Pormaldehyde | HCHO | 1000 - 8000 | Cancerous fumors | | Methane | CH ₄ | 1000 - 8000 | Digestive function, colonic fermentation | | Ammonia | NH ₃ | 100 - 500 | Hepatic encephalopathy, liver cirrhosis, fasting response | | Acetone | СН3СОСН3 | 1000 - 5000 | Fasting response, diabetes mellitus response, ketosis | | Molecule | Formula | Truce
Concentration in
Breath (ppb) | Biological/
Pathology Indication | |------------------------|--|---|--| | Hydrogen
Sulfide | H ₂ S | 10 - 30 | Oral infection, halitonis | | Methyl
merceptan | CH ₃ SH | 10 - 30 | Oral infection, halitoris | | Dimethyl
sulfide | C2H ₃ S | 2 - 20 | Oral infection, halitosis | | Isoprene | CH ₂ = C(CH ₃)-
CH=CH ₂ | 40 - 400 | Cholesterol synthesis, acute myoc artial
inferction, ozone exposure, hemodialysis
response, sleep/wakefulness monitoring | | Acetylene | C ₂ H ₂ | Additive | Exogenous tracer to measure pulmonary function and cardiac output | | Sulfur
hexufluoride | SF _a | Additive | Exogenous tracer to measure pulmonary function | ### Key Characteristics of Quantum Cascade Lasers - * Laser wavelengths cover the entire range from 3.4 to 24 μm determined by layer thickness of same materials - High power (100 mW cw, 50 mW average, pulsed) - · High spectral purity single frequency with DFB structure - Continuous tuning by temperature or current (1-10 cm⁻¹) - High reliability: low failure rate, long lifetime and robust fabrication - · Capable of near-room temperature operation - Pulsed: up to +150°C - CW: up to -63°C # High-Sensitivity Detection of Large Molecular Weight, Broadband Absorbers • Perform coarse, two-wavelength estimate of broad absorption feature using two, time-domain-multiplexed QCL's: • With a balanced ratio detector, expect to achieve α_{min} = 10⁻⁴ - 10⁻⁵ [S] ### Program Status Program initiated January 2002. Rice – Available ~1920.5 cm⁻¹ laser adapted to cryogenic mount for cw operation. Short (1 in.) cavity constructed. LGR – Initiated design/fabrication of ~1900 cm⁻¹ (NO) and 2165 cm⁻¹ (CO) mirror sets. Developing design specifications for multi-mirror cavities. PSI – Preliminary dual-laser measurements underway for acetone detection at 1180/1200 cm⁻¹ using conventional, single-pass absorption to establish baseline detection limits.