

Presentation Outline

- Motivation and Background for Physiological Monitors based on Expired Human Breath
- · Target Trace Gases and Pathologies
- Ultra-Sensitive Gas Detection based Quantum Cascade Laser (QCL) Absorption
- Examples of QCL-based Breath Measurements
- · Program Plan and Status

Trace Reactive Gases As Physiological Messengers

- NO production is tied to numerous physiological processes
 - · vasorelaxation, inflammation, thrombosis, immunity
 - · reduced NO production associated with atherosclerosis and ulcers
 - enhanced NO production associated with asthma, endotoxin shock, diabetes, and edema
- CO production is important in vascular muscle cell physiology and platelet aggregation
- Trace levels of these and other breath species are associated with numerous physiological pathologies
- Typical endogenous production rates are—10 pmol/min requiring trace gas detection levels in the range of 1 to 10 ppbv.

Project Technical Summary Overall Project Goal: To develop and demonstrate a prototype sensor for multi-gas analysis in exhaled human breath based on a Quantum-Cascade Laser Sensor with Cavity Enhanced Spectroscopy

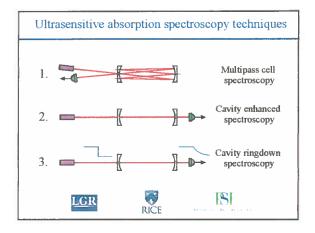
Multi-Gas QCL-Based Breath Analyzer

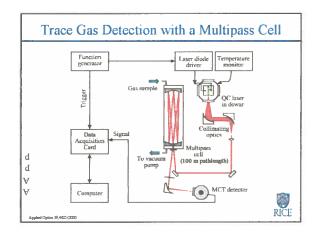
- Cavity-enhanced optical cells can provide ~100 m of optical pathlength in 2 cm of physical pathlength
- Each cell capable of ppb-level detection of trace breath radicals (NO, CO); organic biomarkers (pentane, ethane, formaldehyde, acetone, isoprene); and other breath species (ammonia, isotopic CO₂, etc.)
- Configurable array of stacked optical cells arranged along a common breath flow axis should permit rapid, non-invasive assay of basic biological functions with no consumables

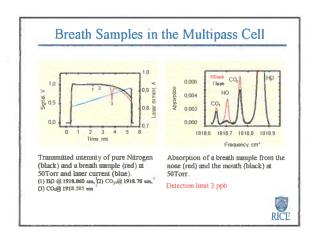
Molecule	Formula	Concentration in Breath (ppb)	Biological/Pathology Indication
Nitric Oxide	NO	6 - 100	inflammatory and ammane responses (e.g., asthma, COPD, IBD), vascular smooth muscle response
Carbon Monoxide	co	400 - 3000	Smoking response, CO possoning, vaccular smooth muscle response, platele aggregation
Hydrogen Peroxide	H ₂ O ₃	1 - 5	Ozadatave stress
Carbon Dioxide	CO ₂	4 - 5 x 10 ¹	Hypoxia, pulmonary diffusing capacity
Carbon Dioxide	12CO ³ /12CO ²	4 = 5 x 10 ³	Marker for Helicobacter pylon infection, GI and hepitac function

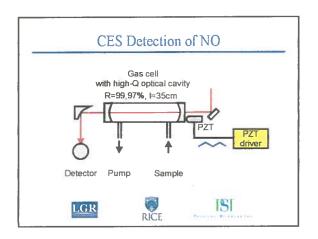
Malecule	Formula	Truce Concentration in Breath (ppb)	Biological/ Pathology Indication
Pentane	СН ₃ (СН ₂) ₃ СШ ₃	4 - 20	Lipid peroxidation, exidative stress associated with inflammatory diseases, immune responses, transplant rejection, breast and lung cancer
Fihane	C ₂ H ₆	3 - 100	Lipid peroxidation and exidative stress
Pormaldehyde	HCHO	1000 - 8000	Cancerous fumors
Methane	CH ₄	1000 - 8000	Digestive function, colonic fermentation
Ammonia	NH ₃	100 - 500	Hepatic encephalopathy, liver cirrhosis, fasting response
Acetone	СН3СОСН3	1000 - 5000	Fasting response, diabetes mellitus response, ketosis

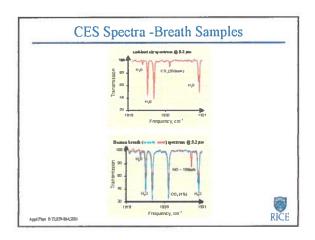
Molecule	Formula	Truce Concentration in Breath (ppb)	Biological/ Pathology Indication
Hydrogen Sulfide	H ₂ S	10 - 30	Oral infection, halitonis
Methyl merceptan	CH ₃ SH	10 - 30	Oral infection, halitoris
Dimethyl sulfide	C2H ₃ S	2 - 20	Oral infection, halitosis
Isoprene	CH ₂ = C(CH ₃)- CH=CH ₂	40 - 400	Cholesterol synthesis, acute myoc artial inferction, ozone exposure, hemodialysis response, sleep/wakefulness monitoring
Acetylene	C ₂ H ₂	Additive	Exogenous tracer to measure pulmonary function and cardiac output
Sulfur hexufluoride	SF _a	Additive	Exogenous tracer to measure pulmonary function

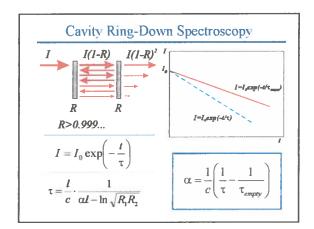

Key Characteristics of Quantum Cascade Lasers

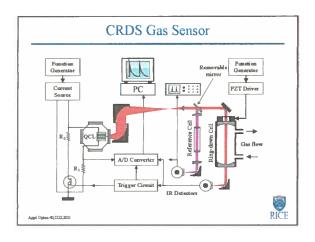

- * Laser wavelengths cover the entire range from 3.4 to 24 μm determined by layer thickness of same materials
- High power (100 mW cw, 50 mW average, pulsed)
- · High spectral purity single frequency with DFB structure
- Continuous tuning by temperature or current (1-10 cm⁻¹)
- High reliability: low failure rate, long lifetime and robust fabrication
- · Capable of near-room temperature operation
 - Pulsed: up to +150°C
 - CW: up to -63°C

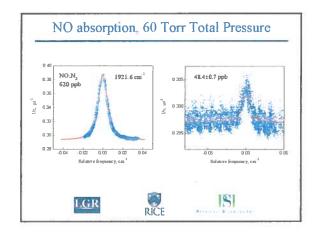


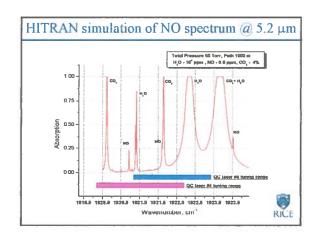


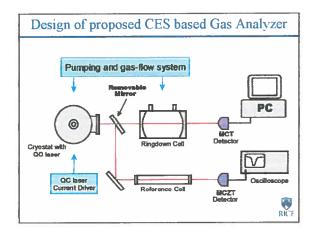


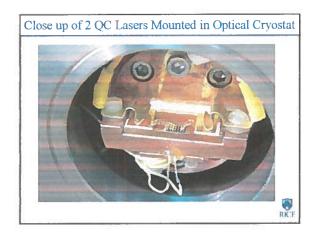


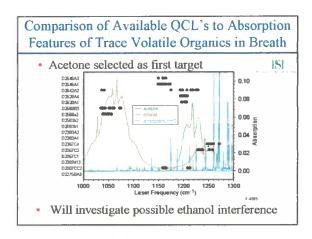


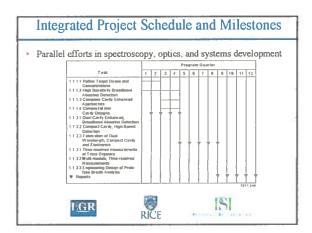


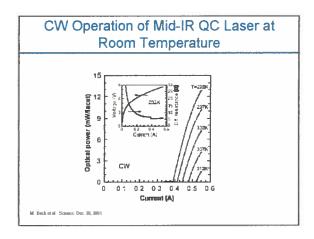


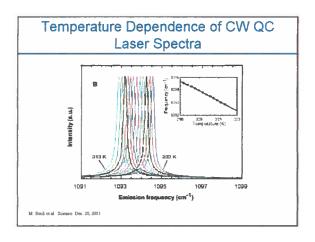











High-Sensitivity Detection of Large Molecular Weight, Broadband Absorbers • Perform coarse, two-wavelength estimate of broad absorption feature using two, time-domain-multiplexed QCL's: • With a balanced ratio detector, expect to achieve α_{min} = 10⁻⁴ - 10⁻⁵ [S]

Program Status Program initiated January 2002. Rice – Available ~1920.5 cm⁻¹ laser adapted to cryogenic mount for cw operation. Short (1 in.) cavity constructed. LGR – Initiated design/fabrication of ~1900 cm⁻¹ (NO) and 2165 cm⁻¹ (CO) mirror sets. Developing design specifications for multi-mirror cavities. PSI – Preliminary dual-laser measurements underway for acetone detection at 1180/1200 cm⁻¹ using conventional, single-pass absorption to establish baseline detection limits.

