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Milestones of Collaboration between
APOL- NCAR and LSG-Rice

» Dawvid Lancaster, Alan Fried, Bryan Wert, and Frank
Tittel,"DFG based tunable absorption spectrometer for detection
of atmospheric HCHO Applied Optics 39, 4436-4443, 2000

+ NOAA Grant 2000-2002 , Pls: A Fried, F Tittel, B.Henry, and
JR.Dr d “ Develop of Ad d Instr. jon
for Arrborne Measurements of HCHO usmg DFG

« Dirk Richter, Alan Fried, Bryan Wert, James Walega and Frank
Tittel, Applied Physics B, October 2002

* MErdelyi, D.Richter and F.K.Tittel, Applied Physics B,
October 2002

« NSF Grant 2002-2005, Pls: D.J. Carlson, A Fried, D.Richter,
F K.Tittel and J.W White,” High-Precision *CO,/**CO, Ratio
Measurements using an Optical Fiber Based DFG Laser
Source”

Motivation for Isotopic Ratio Measurements

Rice NSF Biocomplexity Research Objectives
(2002-2004)

* Atmospheric chemistry [Environmental
monitoring C, gases: CO,, CO, CH,..]

* Volcanic gas emission studies. (CO,
H,0, HCl, SO, .HF, H,S, CO), eg Colli
Albani ; Solfatara; Mammoth Mt., Long
Valley Caldera, CA (north of L.A.)

* Combustion diagnostics

 Non-invasive medical diagnostics (NO,
CO, CO,, NH;)

* Biology (Photosynthesis)

*Support APOL-NCAR Effort (Roller, Curl and Tittel)
=Development of optimal signal processing algonthins of CO,
spectra based on NCAR and Rice DFG based sensors (Year 1)
s[nvestigation of materials compatibility in design of sample and
reference CO, flow system and absorption cells (Year 1)
=Participation in sensor design and performance tests of NCAR
DFG based 4.3 um sensor (Years 1 and 2)

*Develop QC Laser Based Isotopioc Ratio Measurements (to

be named postdoc, Roller, Uehara, Kesterev, Curl and

Tittel)
=Determine optimal CO, absorption lmes (Yearl)
sDesign and test prototype CO, sensor (Year 1)
sDemonstrate measurement precision and long term stability for
volcanic isotopic CO, emission momtoring (Year 2)

«Educational Activities (Tittel, Curl, Uehara, Fraser)

Measurement Strategy of Isotopic Abundance
Ratios

Isotope-Ratio Measurement Techniques

Isotopic ratios are stated in 8 units and in the case
of carbon is defined as:

SC={[13CNC] e [PCPClyg = 1} 1000 (Ygg)
For carbon isotopes the most common standard is
the Pee Dee Belemnite dolomite carbon standard
[13C/'2C]ppg =0.011237
To detect a & value with an accuracy of 1 %y,
requires a measurement of absorbance at the 10-
level when detecting two absorption lines of ~ equal
intensity.

« Isotope Ratio Mass Spectrometry (IRMS)
Precision: ~ 0.01per mil

 Gas chromatography (GC) -IRMS
« Nuclear magnetic resonance spectrometry
FTIR Spectrometry (~0.1-0.2 per mil)
Infrared absorption spectroscopy

» Infrared heterodyne ratiometry

= Non-dispersive infrared spectroscopy

= Laser optogalvanic spectroscopy

= TDLAS spectroscopy: 3 (13CO,) ~ 0.2mil




MeasurementFrincipie of Absofption Sensitivity Enhancement Techniques

Spectroscopy
[ Absartier 1 + Optimum Absorbing Transition
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= Cavity Enhanced, Cavity Ringdown
= Open Path [with retro-reflector]
»  Fiberoptic Evanescent Wave Spectroscopy

a(v) - ebsorption cosfficient [cr! atnt!); L — path length [cm)
v - frequency ferr']; P,- partiel pressurs [atm]
Molecular Absorption Coefficient

¢ Detection Schemes
o(v)=C-S-g(v- Vo) «  Frequency Modulation, Wavelength Modulation,
) Two-tone frequency modulation
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Two DFG Based Gas Sensing Approaches

Multi-species detection:

« widely tunable:3.3-4.4um
» moderate DFG power

. i itivity

Single-species detection:
« ITU-diode laser selection

« high DFG power
« high sensitivity
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Experimental set-up for DI'G based carbon
isotope-ratio analyzer
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Implementation of Isotopic Abundance
Ratio Measurement Strategy
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Key Characteristics of Quantum Cascade Lasers

Pulsed QC Laser Based Gas Sensor

+ Laser wavelengths cover entire range from 3.5 to 66 um
determined by layer thickness of same material
Intrinsically high power lasers (determined by number
of stages)
s CW:~100 mW @ 80°K, mWs @300 °K
= Pulsed: I W peak at room temperature, ~50 mW avg.
@ 0 °C (up to 80 % duty cycle)
« High Spectral purity (single mode: <kHz - 330MHz)
» Wavelength tunable by current or temperature scanning
« High reliability: low failure rate, long lifetime, robust
operation and reproducible emission wavelengths

RICE
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TDL spectrometer scan near 2314 ¢m!, showing CO,
isotopomer lines for (12C10,,13C!60,, 13C!60'%0)
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» Mid-IR DFG Based Isotopic Ratio CO, Sensor at 4.35 pm
« Compact, tunable, modular, robust (alignment insensitive),
fieldable
« High sensitivity (<210 ) and selectivity (<30 MHz)
» Fast data acquisition and analysis
« Applications of ’CO,/'2CQ, Isotopic Ratio Measurements
. A‘;\lﬁl)lospheric chemistry ( monitoring of C, gases with a § of 0.1

» Volcanic gas emission studies in US and Italy

= Strategy considerations and implementation of CO, isotopic

ratio measurements
* Medical diagnostics
+ Future Directions
« Optical fiber pumped DFG besed spectroscopic laser source
using most recent advances in photonic device technology
= Companison of a DFG source by 4.35 um DFB-QC laser

RICE




