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QC-DFB Laser: Pulsed vs. CW 

ADVANTAGES SPECIFIC ISSUES 

♦Laser can be operated at near-room 
temperature (TE cooling) 

♦Facilitates temperature control  

♦No consumables (liquid N2) 

♦Compact 

♦Broad asymmetric linewidth 
(~300 MHz FWHM) related to 
heating during the pulse 

♦How to tune the frequency 

♦Reduced average power 

♦More sophisticated electronics for 
driving QC laser and data 
acquisition are required 

 



Pulsed QC Laser Wavelength Scanning 

Solution: Sub-threshold current 
K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, 
D.L. Sivco, and A.Y. Cho, “Sensitive absorption spectroscopy with a 
room-temperature distributed-feedback quantum-cascade laser”, Opt. 
Lett. 23, 219-221 (1998)  
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Synchronous Frequency Manipulation  
ν-(T) 

ν+(T) 
ν0(T) 

ν1 
ν2 

ν0 

νN 

T 

1. 2. 

Synchronous digitally synthesized 
steps of tuning current (enables 
linearization of scan) 

Fast cycling of the laser frequency with a 
subthreshold current and slow scanning 
with temperature (wavelength 
modulation) 

A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. 
Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Trace-gas detection in 
ambient air with a thermoelectrically cooled, pulsed quantum-cascade 
distributed feedback laser”, Appl. Opt. 39, 6866-6872 (2000)  



Pulsed QC-DFB Laser Housing 



Motivation for NH3 Detection 

• Monitoring NH3 concentration after De-NOx 
process in  exhaust pipes in electric power 
stations 

• Pollutant gas monitoring 
• Atmospheric chemistry 
• Semiconductor Processing  
• Medical diagnostics (kidney & liver malfunction) 
• Space craft related gas monitoring 
 

 



NASA Water Recovery System 



Ammonia Absorption Spectrum 
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Pulsed QC Laser Based Gas Sensor Schematic 

5 ns 



NH3 Sensor Based on Pulsed 10.05 µm laser  

One IR detector 

Sensitivity ~0.3 ppm 



Energy Distribution of the QC Laser Pulses 
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Raw Data – NH3 Detection 
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Detected Ammonia Absorption 
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Kalman Filtering of the Data 
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NASA-JSC Bioreactor Vent Gases 
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Conclusions and Future  Developments 

• A compact mobile gas sensor based on a thermoelectrically 
cooled QC-DFB laser was developed and applied to continuous 
monitoring of NH3 concentration levels. 

• The sensor can be readily modified to detect other species by 
replacing the QC-DFB laser. 

• The principal error source in the reported sensor architecture is 
laser power fluctuations. Thus, the sencitivity can be improved if 
the reference channel is added (Listen to the next talk!!!).   

• The data acquisition time can be reduced or the accuracy 
improved if the laser pulses repetition rate is increased from the 
present 20 kHz to 1-3 MHz. 
 



Ammonia Absorption Spectrum 
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NIR Spectra of NH3 , CO2 and H20  
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NH3 Diode Laser Based Sensor 
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